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Abstract 
This paper examines the parallelization of a technique for 
speeding up the evaluation of potentially-complex real-valued 
functions at  a large number of points. The technique being 
parallelixed generates a Chain of Recurrences (CR) which 
is then used to compute the function incrementally (i.e.) by 
using the results of one iteration in calculating the value of 
the function in the next iteration). This paper examines 
the possibilities for mapping the CR technique onto paral- 
lel machines. The factors influencing the choice of mapping 
alternatives include efficiency, speedup, and most interest- 
ingly, the potential for improved error distributions. 
1 Introduction 
A common component in the analysis and solution of many 
problems, is the iterative evaluation of a function G(x) over a 
domain of points. More specifically, given a starting point zo 
and an increment h, the evaluation of the function G(x0 +ih) 
for i = O,I,,..,n-l occurs frequently in applications such as 
plotting graphs of functions, simulations, and signal pro- 
cessing applications. Straightforward evaluation of complex 
functions may not be adequate due to the cost in terms of 
computation time. One way to speed up  this process se- 
quentially, is to compute the function incrementally, i.e., 
use the results of one iteration in calculating the value of 
the function in the next iteration. For example, to compute 
the values ezp(0.0ii2 - 0.22) 

for z = O , 1 ,  . . . , n we can construct the chain of recurrences: 

fo(2) = 20.3t+l 

i = O  
- 1) * f l ( 2  - l), 2 > 0, 

ezp( i = O  -0.19) 
20.3 I 

- 1) * ezp(.02), i > O ,  

There will be only 

two multiplications performed at each step of the loop which 
computes fo(i) values: 
f0:=1/2; fl:=exp(0.-19)/2-0.3; f2:=exp(0.02); nrite(f0); 
for i :=I to n-I do fO:=fO*fl; fl:=fl+fZ; nrite(f0) od; 

This approach has been shown to provide substantial re- 
ductions in computation time in the sequential case [5]. 

This paper examines the problem of mapping of this re- 
currence technique onto parallel machines. The underlying 
approach is the same as in [4], where a chain of recurrences 
(system of recurrence relations) for a given function is c-7- 
structed. 
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Then, instead of evaluating the original function directly, 

the evaluation of the function can be reduced to just k addi- 
tions and/or multiplications , where IC is the "length" of the 
chain of recurrences. This method requires two steps: 

Constructing the chains of recurrences. 
Evaluation of the function over the set of points using the 

The second step, that of computing the function using the 
relations is highly parallelizable. However, there exist sev- 
eral alternatives for mapping onto parallel machines. The 
factors influencing the choice of mapping alternatives in- 
clude efficiency, speedup and most interestingly, different 
error distributions. The iterative solution using the recur- 
rence technique involves a cumulative error effect. By paral- 
lelizing appropriately, not only is greater speedup obtained, 
but reduced error accumulation can also be gained. 

The parallel evaluation of recurrences has been studied 
before, but in a more general context, and only using func- 
tional parallelism. Methods to determine the degree of par- 
allelism present in a recurrence relation, and a method for 
exploiting it have been discussed in [IO]. Other approaches 
to parallelizing arbitrary recurrences have been studied in 
[l], which are similar to the functional-parallel approach 
which we describe later. It is useful to note that,  several 
methods exist [6, 91 to compute a degree k polynomial in 
O(log2k) parallel steps. In the case where the polynomial is 
to be evaluated in a loop, using a chain of recurrences allows 
the evaluation to be performed in O(1) parallel steps. 

Our focus is primarily on a variety of mapping tech- 
niques ~ both functional and data parallel - which influence 
speedup, as well as other properties such as the accumulated 
computational error in function evaluation. 
2 Chains of Recurrences 
Given constants PO,.. . , ( o k - - l ,  a function fk defined over 
Nu{O}, and operators 01,. . . , ak equal to either + or *, we 
define a Chain of Recurrences (CR) as the set of functions 
fo, fl , . . . , fk connected in such a way, that for 0 5 

recurrent relations. 

< k 

Further, to denote the CR above we will use the shorthand 

The CR for f o ( z )  from section 1 can also be rewrltten as 
fo(i) = {PO,Ol,Pl, 0 2 , p 2 , .  . . O k , f k } ( i ) . ,  

Given a CR {PO,  01, PI ,  0 2 , .  . . , ~ k - 1 ,  @k, f k ( i ) }  we call it a 

simple CR, if f k ( i )  is a constant; 
pure-sum CR if 0 1  = 0 2  = . . . = ak = +; 

'it IS useful to observe, that a simple pure-sum CR of the length 
k defines polynomial f o ( i )  of degree k ,  and constants ippo,. . . , p k  are 
nothing more than the table of finite differences of f o ( i )  taken at the 
point i = 0 



0 pure-product CR if 0 1  = 0 2  = . . . = @k = *. 
The integer k from our ,definition is called the length of the 
CR. I t  is easy to see that the number of arithmetic opera- 
tions needed to compute the next value of a simple CR is 
equal to the length of the CR. Therefore, the length of a CR 
gives an indication of its evaluation cost. 

For a given G(e) ,xo and h,  it is possible to construct 
a CR Q or an expression with CRs as operands such that 
@(i) = G(ZO + i * h).  A general algorithm to construct CRs 
for a given formula G(z) was considered in [3, 81. This algo- 
rithm can be applied to any function. Instead of finding re- 
currences for a particular class of function, it automatically 
generates a recurrence representation for a wide variety of 
common functions in order to obtain more efficient compu- 
tational procedures for their evaluation. The algorithm is 
based on two main principles: 

replacing the trivial subexpression x by the simple recur- 
rence {ZO, +, h }  on the parse tree of G; 
application of operations from expression G(z) to recur- 
rences already obtained during end-order traversal of the 
parse tree in order to construct CRs which embrace larger 
subexpressions of the given original expression 

This algorithm uses CR-construction rules given in [8]. Most 
of these rules are very simple. For example, given pure-sum 
CRs f ( i )  = z2+1 = (1, +, 1, +, 2}, g(2) = 3*i+2 = ( 2 ,  +,3}  
and constant c, it is easy to get CRs for f(i)+g(i) and c*f(i): 

Since this technique is based on the use of previously 
computed values to compute the next value, any computa- 
tional error in the previous step will be passed on to the 
new value in addition to any error in the current step. In 
general, this error is witlhin reasonable limits, but for a large 
number of iterations, the error can become significant. This 
can be rectified by “refreshing” the recurrence relations, i.e., 
by reinitializing the value of components periodically. If the 
refreshing is done over the regular number of points, we find 
that this analogous to it well known sequential (and paral- 
lel) program transformaition, called “strip-mining/striping” 
[7] or “loop unrolling”. 

Given F ( i )  which h.as to be evaluated for i = 1,. . . , n 
(this corresponds to the initial “linear” problem), assume 
that n = m . q. We can compute the required values using 

strip-mining: 

striping: 

It can be seen that with the original CR technique, the error 
is accumulated through n = m . q steps of computation, 
but after strip-mining/striping it is accumulated through 
no more than m + q steps. Two features can be noted here: 

We need not reconstruct CRs to strip-mine/strip compu- 

This transformation allows us to exploit both paralleliza- 

f ( 2 )  + g ( i )  = ( 3 ,  +, 4, +., 2}, c * f ( 2 )  = {c, +, c, +, 2c) .  

F ( j .  q + l ) , j  = 0,. . . , m - 1 ; l  = 1 , . . . , q ;  or 

F ( ( l - l ) . m + j ) , j = :  I , . . . ,  m;1=1, ..., 9;  

tations and 

tion and CR-based improvement of the code. 

3 Parallel lmplementaitions 
Function evaluation in loops using recurrence relations is 
inherently parallelizable. Consider a function G ( z )  to be 
evaluated beginning at  z = z o ,  over a domain of n points 
with an increment h. There are two fundamentally different 
ways of parallelizing this problem: Functional Parallelism 
and Data Parallelism. The linear nature of recurrence rela- 
tions gives rise to functional parallelism. If a function can 

be expressed as a CR of length k ,  it follows that the evalua- 
tion of the function will require k steps. Since each of these 
steps is independent (from the linear nature of the CR) the 
evaluation can be performed in parallel. Data parallelism 
arises from the fact that given p processors, the domain of n 
evaluation points can be divided into p sub-domains which 
can then he mapped to a parallel computer in two ways: 
small increments  and large increments .  

The following function will be considered to illustrate the 
three cases. 
f(z. = , ( ~ ~ 1 4 + ~ 3 ~ 3 + ~ z ~ z + o i ~ + ~ o )  

a 2  = -1111 
2 b 3 2 3 + b 2 1 2 + b 1 2 + b o  , where a0 = 1, a1 = 190 1 

480 , a3 = %,a4 = -A, bo 1 l , b l  = b - -2% 
84 1 - 5 0 4 ’  

b 3 =  $. 
Currently, the CRs are constructed using a procedure 

implemented in Maple [2], which generates a symbolic rep- 
resentation of the CR. Using the symbolic representation, 
the chain of recurrences for each sub-domain can be com- 
puted b substituting the appropriate values of xo and 1% in 
the symgolic representation, thus eliminating the need to re- 
compute the recurrences for each sub-domain. The symbolic 
representation of the CR for this function is: 

e ( a 4  (hr; + e 3  ( 2 0 + ! 3 ) ) + a 3  e 3 + o z e i  + a i  1 ~ )  

2 ( 6 3 e 3 + b 2 e i + b i  h )  
{ . f ( . o ) ,  * ?  

e ( a 4 ( 2 h e 3 + ~ 2 ( ” o + 2 h ) ) + a 3  e 2 + 2 0 2 h Z )  

2 ( b 3 e 2 + 2 b 2  h 2 )  
1 * >  

1 ( z ra4h4)  
,(a4 ( 3 h e , + s h 3 ( ~ , + 3 h ) ) + 6 ~ , h 3 )  

1 * I  e 
2 ( 6 b 3 h 3 )  

1 *, 

where, e l  = h i o  + h(zo  + h ) ,  e2 = 2 h e l  + 2 h 2 ( z 0  + 2h) ,  e 3  = 
1 8 ~ 2  + e l ( z o  + h )  

Functional Parallel  Evaluation. The function f(z) 
defined above has a CR of length 4 , and thus requires 4 
steps to evaluate each iteration. Given 4 processors, each 
of these 4 operations may be executed in parallel. This 
requires synchronization at  each iteration, which combined 
with the communication latencies may not yield an accept- 
able level of efficiency in the case of this function since the 
CR has a length of only 4. This method of parallelizing can 
be combined with the methods described below by having 
4 processors per subsequence perform the 4 operations in 
parallel, in addition to each subsequence being performed 
in a data-parallel fashion. 

Strip-mining. Parallelizing using the strip-mining im- 
plies that we calculate the initial recurrence relations for the 
p sub-domains first. The starting values for each of the re- 
currence relation for each processor would be 20 + h ( j  - I):, 
where j is the number of processor, and each processor would 
compute n /p  values over the step h. For the above ex- 
pression, calculating the CR produces a chain of length 4, 
with, 0 1  = 0 2  = 0 3  = 0 4  = *. Thus the computation 
of each successive value requires 4 multiplications, and uses 
the value obtained from the previous computation as the 
starting point. 

Due to the fact that each processor computes a smaller 
sequence than in the sequential case, the peak accumulated 
error will be much less that in the sequential case. 

Str iping.  Here again the domain of n values is divided 
into p sub-domains, but unlike t,he previous case, the sub- 
domains are interleaved. The starting points of the p sets of 
recurrence relations would then be, xo + h ( j  - l), where j 
is the number of processor and each processor would com- 
pute n / p  values over the step H = hp.  The accumulated 
error in each subsequence is much smaller than tlhe total 
accumulated error, had the entire sequence been calculated 
sequentially. In this case though, the shape of the error 
curve should be different from the previous case, since, due 
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to the interleaving, all the subsequences terminate in the 
same region of the overall sequence. 

sus the sequential CR evaluation, and then between the two 
parallel increment methods being described in this paper. 

v - _ -  
4 Experimental Results 
In this section, empirical data is presented that illustrates 
and confirms the ideas and claims outlined in the previous 
sections. 
Error Characteristics 

A number of different types of functions were evaluated 
using both the small and large increment methods. The er- 
ror characteristics have been compared and plotted. The 

Figure 5 compares the small increment parallel evalua- 
tion method to the sequential CR evaluation method, and it 
can be seen that the difference is dramatic. Figure 6 shows 
the difference in the error characteristics between the two 
forms of parallel evaluation based on increments. As shown, 
the small increment method has a significant advantage over 
the large increment one for this function. This behavior is 
discussed 

functions considered can be divided into two primary cate- 
gories: those yielding CRs in which all the operators are ad- 
ditions ( p u r e - s u n  CRs) and those yielding CRs in which all 
the operators are multiplications (pure-product CRs).  The 
error characteristics of both types are studied in the follow- 
ing subsections. The results were measured on a SPARCsta- 
tion SLC, implemented in C. The CRs for the functions were 
generated using a Maple-based implementation. The error 
characteristics have been compared based on the following 
criterion: 

e Type of function 
e Mapping method used 

Pure-product CR Example 
The example function is the same as the function of sec- 

tion 3. Figure 1 shows percentage error characteristics ver- 
sus iteration number in the evaluation of the example func- 
tion using three different techniques: 
e 1. Direct evaluation, 
e 2. Small increment method, and 
e 3. Large increment method. 

I 
x 
I n 
0 100 200 300 400 500 600 700 800 900 1000 

-4 ' Y I 
0 100 200 300 400 500 600 700 800 900 1000 

in-' 

1 

'0 100 200 300 400 500 600 700 800 900 1000 

Figure 1: Percent Error with (a) Sequential CR Evaluation 
(b) Small Increments (c) Large Increments 

The domain of x was [0, lo], and was partitioned into 
1000 points with h = 0.01. As predicted, the errors show 
a dramatic decrease when evaluated using either the small 
or large increment techniques. Over the range of points 
evaluated, Figure 1 shows the error improvement to be from 
three up to four orders of magnitude over the sequential CR 
solution. 

Figures 5 and 6 give a perspective on the improved error 
performance by first using one of the increment methods ver- 
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Figure 3:  Comparison of percent errors with (a) Small 
crements (b) Large Increments [Pure Product CR] 

In- 

Pure-sum CR Example 

ple polynomial shown below: 
The function used to illustrate pure sum CRs is the sim- 

f(.) = 25 - 1sc4 - 1 i X 3  - 1 9 2  - 3. + 2 

this function yields a pure sum CR of length 5 .  To evaluate 
this function, the domain of x was [ O , l O ] ,  and was parti- 
tioned into 1000 points with h = 0.01. 
Discussion of Error Characteristics 

The errors in function evaluation using CRs could arise 
due to two sources: 1) Computation Error (Floating point 
error that occurs when we compute the initial values of the 
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Figure 4: Comparison of percent errors with (a) Sequential 
Evaluation(b) Small Increments [Pure Sum CR] 
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Figure 5: Comparison of percent errors with (a) Small In- 
crements (b) Large Increments [Pure Sum CR] 

constants), and 2) Representation Error (Error caused by 
loss of information due to the finite word size). Typically 
when we compare the function’s values from evaluation using 
CRs with normal straightforward evaluation, the error of 
representation will affect both quantities. Thus it is the error 
of initialization that plays a crucial role in causing the value 
obtained using CRs to be different from the value obtained 
through straightforward evaluation. Since successive values 
are computed using past values of the components of the 
CR, the nature of the function also plays an important part 
in the progression of the error. 

Let’s consider a simple pure-sum CR 
@(4 = {(Po, +, (Plr  +, . . ‘ i +, ( P k H i )  

qz) = {Go, +,81,+, . . . , + , G k } ( i ) ,  

and the approximate simple pure-sum CR 

obtained after floating point initialization of @ ( z ) .  Let CT 
be an upper bound for the relative error of initialization 
(we assume that U << 1). The value of U depends on the 
concrete floating point representation. I t  can be shown (see 
[Ill for details) that I&( ; )  - @(i)l  5 U .  r ( i )  . maxl l ( ~ ~ 1 ,  

where r(i) = (1,  +,I,+, . . . ,+, l } ( i ) .  

The function r(i) is defined by the following formula 

P 
k + i  times 

where i(’) = i(i - 1 ) .  . . ( z  - j + 1) is j - th  falling factorial. 
In the case of a function having a pure sum CR, the above 
equations show that the error I&(i) - @(;)I does not depend 
upon the value of the function @(i ) .  Thus this means that 
both the large increment and the small increment methods 
will have the same error characteristics. This is borne out 
by the empirical results plotted in figure 5. 

Consider simple pure-product CR 
@(i) = {(Po,*,cPlr*,’ . ’ ,* , ’Pk)  

W j  = {Go, *, G l ,  *’ . . . , *, @ k } ( i ) ,  
and the approximate simple pure-product CR 

obtained after initialization of @(i). It is easy to show, that 
16 - @I 5 uJ?(i)@(z). The last means, that error depends 
on current value of the function, multiplied by F ( i )  and by 
initialization error U. That’s why in the case of the pure 
product CR, we find a difference in accumulated error be- 
havior with respect to the different mapping schemes. 
Parallel Performance Results 

The timing results shown in Tables 1 and 2 are presented 
to show the potential for speeding up the parallel imple- 
mentation of the CR method, and for further improving the 
performance of evaluating a function over a large domain 
of values. The data shown in Table 1 were collected on a 
96-processor Intel Paragon at ETH-Zurich, and the function 
of Section 3 was evaluated over a domain, 2, of [O,  lo),  and 
was partitioned into n + 1 points, with h = 10/n. The re- 
sults in Table 2 were taken with the same conditions as for 
the Paragon, but on a 26-Processor Sequent Balance sys- 
tem at  Kent State University. The following 6 versions were 
implemented. 

e 1. D.S: direct sequential evaluation. 
0 2. C.S: sequential evaluation using CRs. 
0 3. C.F: functional Parallel method. This evaluation 

involved creating a large-grained pipeline among the k- 
stages of the CR and passing data between processors 
after each step of the CR evaluation. 
4. D.P: direct evaluation of the function in parallel, by 
dividing the domain [0,10] into 10 sub-domains. 
5. C.DP: data-parallel evaluation of the function using 
CRs, by dividing the domain [0,10] into 10 sub-domains. 

e 6. C.FD: parallel evaluation of the function using CRs, 
by a hybrid of methods 3 and 5 above. 

Cases 1 - 5 of the previous 6 cases were implemented 
on both systems. Case C.FD was only implemented on 
the Paragon. For all cases except cases C.F and C.FD, 
10 processors were used. In case C.F, because the func- 
tion being evaluated had a CR of the length 4, only four 
processors were used. In case C.FD, 40 processors were 
used with 10 being employed for the sub-domains, and 4 
processors for each sub-domain. As can be seen from the 
Tables, the best choice of method is highly dependent on 
the number of available processors, and upon the number 
of points (Le., the resolution over the interval) to be evalu- 
ated. First, examining the execution times for the Paragon 
shown in Table 1, it can be seen in cases D.S and C.S, that 
there is a linear increase in execution time as the problem 
instance grows. This is to be expected due to the linear time 
complexity of the evaluation of a function, either directly, 
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n C.F I D.P I C.DP 1 C.FD ] 

Table 1: Execution times of example function on a 
Paragon(in sec.) Problem size in thousands. 

Table 2: Execution times of example function on a Sequent 
Balance(in sec.) Problem size in thousands. 

or using CRs. Considering case C.F, the functional-parallel 
case, note that this case performs worse than for either of 
the sequential cases. While this may seem very discouraging 
at  first sight, it is actually quite to be expected. The grain 
size of the computation per processor, compared to the com- 
munication per computation step, is very small. Therefore. 
much more time is being spent in communication than is be- 
ing gained through the parallelism, which is only 4 proces- 
sors. In case D.P, the data-parallel implementation of the 
direct method, a significant (roughly 7 times) improvement 
is shown over the direct sequential method (D.S), but no- 
tice that for all problem sizes examined, that the execution 
time exceeds that of the sequential CR method (C.S). This 
is potentially disturbing, because it might be hoped that 
the benefit from parallelism might dwarf the expected im- 
provement from a sequential algorithm enhancement alone. 
However, it should be noticed that the example function is 
very complex, and that direct evaluation, even at a paral- 
lelism of width 10, might not be expected to do better than 
the reduction gained through the 4 multiply-add operations 
as required by the CR technique. In examining case C.DP 
then, the data-parallel increment-based CR method, we be- 
gin to see the more subtle trade-offs involved in using CRs 
on parallel machines. Note that for smaller values of n,  the 
performance of case C.DP, is about the same as for case 
D.P, but slightly worse than for case C.F. However, note 
that as n increases past 1000, the disadvantage compared to 
case C.F disappears, and the growth in execution time re- 
mains very low as compared to either case C.F or D.P. The 
reason here again is related to grain size of the computation 
compared with communication. Obviously, the data-parallel 
CR technique is able to be mapped on to very fine-grained 
machines, but for a system such as the Intel Paragon, the 
grain size required due to the large ratio of communication 
to computation speed of the machine, is quite large. Thus, 
for smaller values of n ,  the technique is not preferred over 
techniques C.F or D.P, but for large values, the amount of 
computation as compared to communication for case C.DP 
allows it to accommodate larger and larger problems, while 
only suffering a very slow rate of growth in execution time. 
Finally, in case C.FD,  the hybrid of Data and Functional 
Parallel solutions, it can be seen that for smaller values of 
n, the technique compares favorably with all of the paral- 
lel cases in an absolute sense, but when considering that 40 

processors are being used, the efficiency is not as attractive. 
In fact, as n continues to grow, the technique begins to suffer 
badly, as was that case with the purely functional parallel 
case (C.F). However, such a method might be considered 
useful for cases of small to moderate values of n ,  in which 
there are an ample supply of processors available. 

In considering the execution timings for the Sequent as 
shown in Table 2,  many of the observations are similar to 
those for the Paragon, but with a few differences. Case 
D.P, the parallel direct method, shows similar behavior to 
the Paragon, with somewhat worse performance for smaller 
values of R ,  but better values and slower growth than the 
D.S case. Similarly, for case C .DP,  note the relatively slow 
rate of growth of execution times compared to both cases 
C.F and D.P, especially as n becomes larger ’. 
S u ni mar y 

Evaluation of functions using CRs can be more efficient 
than direct evaluation of functions. The error associated 
with the CR method can be significantly reduced when the 
function is evaluated in parallel using CRs. The two data 
parallel mapping techniques discussed each result in dramat- 
ically reduced errors although having different error distri- 
butions. This is an excellent example of a situation where 
parallel evaluation techniques result in significant improve- 
ments in solution quality, in addition to reduced execution 
times. 
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