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ABSTRACT
In this paper we consider the problem of fast computation of
sums of n-ary products of rational numbers, for large n. We
present improvements to the standard binary splitting algo-
rithm which are due to numerous factors, including changing
the standard arbitrary precision integer representation to
one that is more suitable for such computations, unrolling,
and chains of recurrences techniques. For the computation
of �(3) to 640000 decimal digits, we achieve a speedup factor
of 2.65 over the standard binary splitting algorithm, which
compares favorably to the ideal case in which the numerator
and the denominator can be reduced by their greatest com-
mon divisor at no cost. If asymptotically fast multiplication
is not available (as in the Java Development Kit), a speedup
of an order of magnitude is easily obtained.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation|Representations (general
and polynomial)

General Terms
Representation of integers, binary splitting, chains of recur-
rences

1. INTRODUCTION
Advanced algorithms to perform basic operations on arbi-
trary precision integers are very well known. Most computer
algebra systems (such as Maple) and specialized number the-
ory packages (such as Piologie [8]) contain implementations
of these algorithms. Fast arbitrary precision arithmetic is

�This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC) of Canada.
ySupported by the Natural Sciences and Engineering Re-
search Council Postgraduate Scholarship and the Alberta
Heritage Scholarship Fund.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2000, St. Andrews, Scotland
c2000 ACM 1-58113-218-2/ 00/ 0008 $5.00

very important in applications such as high-precision oat-
ing point computations of values of elementary functions, �,
Ap�ery's constant, and so on. Modern algorithms for such
computation are performed over rational numbers until the
very last step which involves the conversion from the exact
rational value to the high-precision oating point value [3,
5]. In this paper we will consider �(3)-like computational
tasks. Given a natural number N , we wish to compute

S(N) =

N�1X
n=0

a(n)

b(n)

nY
i=0

p(i)

q(i)
; (1)

where a; b; p; q are polynomials with integer coeÆcients.

A widely used approach to the computation of (1) is binary
splitting. All intermediate results are represented by the
standard base-b representation X =

PL�1
k=0 xkb

k, which will
be called the standard representation in this paper. The
binary splitting algorithm is asymptotically faster than re-
peated multiplication only if the multiplication of L-digit
integers is asymptotically faster than O(L2), because it does
not reduce the overall operational complexity of computa-
tions. In this paper we will show how it is possible to reduce
both the operational and bit complexity of (1), as well as
the memory requirement for the calculation.

Creative telescoping is one of the great tools for �nding new
formulae for well-known constants [1, 2]. Acceleration po-
tentials given by new formulae appear promising. However
the use of these formulae for actual computations seems to
be too straightforward, and it will be shown that they do
not speed up computations as much as they �rst appear to.
In fact, we will show that applying unrolling to a simpler
formula can be superior when combined with the other im-
provements proposed.

For illustration, we consider formulae (2) and (3) for �(3)
which were used to compute this constant up to 1000000
and 128000000 decimal digits, respectively [5, 9]:

�(3) � 1

2

N�1X
n=0

(�1)n �205 n2 + 250 n+ 77
�
((n+ 1)!)5 (n!)5

((2n+ 2)!)5

(2)

and

�(3) � 1

24

N�1X
n=0

(�1)na(n)((2n+ 1)!(2n)!n!)3

(3n+ 2)!((4n + 3)!)3
; (3)
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Formula (2) Formula (3)
Digits of �(3) Size of numerator Useful digits (%) Size of numerator Useful digits (%)

10000 61278 20:6 57278 21:3
20000 132556 19:1 124115 19:7
40000 285111 17:7 267350 18:3
80000 610220 16:6 572941 17:1
160000 1300441 15:6 1222365 16:0
320000 2760884 14:7 2597699 15:1
640000 5841773 13:9 5501340 14:2

Table 1: Proportion of useful digits in the numerator before �nal oating point division.

where a(n) = 126392n5+412708n4+531578n3+336367n2+
104000n + 12463. Formula (2) provides approximately 3.01
additional decimal digits of accuracy for each extra term,
while approximately 5.04 digits are obtained for each extra
term in formula (3).

Straightforward application of binary splitting to formula
(2) (as it is described in [5]) for N = 10000 produces a
rational number with the numerator and the denominator
having 208367 decimal digits. Simple inspection shows that
the greatest common divisor (gcd) of the numerator and
the denominator is an integer having 170331 decimal digits.
This suggests that only 38036 digits (less than 20% of the
result) are useful. When N grows, this percentage decreases
(Table 1 contains corresponding statistics collected for (2)
and (3)). There is no doubt that carrying unnecessary dig-
its slows down the computation. There is also no evidence
that the binary splitting technique as described in [5] takes
care of cancellation at intermediate steps of computations,
although some part of the cancellation factors can be pre-
dicted. Unfortunately, divisions have to be performed to
remove the predicted factors, which may become computa-
tionally prohibitive as N increases.

In this paper, we examine various techniques for accelerat-
ing the evaluation of sums of the form (1). These techniques
include an alternate representation of integers called the par-
tially factored representation, unrolling, and chains of recur-
rences. The partially factored representation decreases the
cost of multiplications and divisions, and it allows common
factors in the numerator and the denominator of a rational
number to be easily removed. Unrolling is a simple way to
obtain formulae with faster convergence. Finally, chains of
recurrences [10] can be applied to the computation of a(n)
to speed up the computation of each term. Bit complexity is
reduced by using the partially factored representation, and
operational complexity is reduced by unrolling and chains of
recurrences. Although the computation of �(3) is used for
illustration, these techniques can be used on other similar
sums. Some examples [4, 5] are the evaluation of elemen-
tary functions, hypergeometric functions, and the Gamma
function at rational points, as well as

1

�
=

1X
n=0

 
2n

n

!3
42n+ 5

212n+4
: (4)

The rest of the paper is organized as follows. Section 2 gives
the necessary preliminaries. Section 3 describes the partially
factored representation of integers. The application of this
representation to (1) is discussed in Section 4. The com-
bination of this representation with unrolling and chains of

recurrences together with experimental results are presented
in Section 5, while Section 6 gives concluding remarks and
discusses how our method can be used for evaluating series
in parallel.

All timings presented here were obtained from running our
C++ implementation built on the top of the Piologie 1.2.1
library [8]. The hardware used is a SUN A25-BA Enterprise
server with 1 Gb of RAM and two 400 MHz CPUs1

2. PRELIMINARIES
In this section, we recall known techniques to expedite
computations, explore possibilities of combining these tech-
niques, and set the acceleration targets provided by the
\ideal" case.

2.1 Binary splitting
The idea of binary splitting for the evaluation of (1) is the
following [5]. Given bounds n1; n2 consider the partial sum

S =

n2X
n=n1

a(n)

b(n)

p(n1) � � � p(n)
q(n1) � � � q(n) : (5)

Let � � 0 be a cut-o� value. Compute integers P =
p(n1) � � � p(n2), Q = q(n1) � � � q(n2), B = b(n1) � � � b(n2) and
T = BQS. If n2 � n1 � �, these values are computed di-
rectly. If n2 � n1 > �, they are computed using binary
splitting:

{ choose nm = bn1+n2
2

c,
{ compute components Pl; Ql; Bl; Tl corresponding to the
left interval n1 � n � nm,

{ compute components Pr; Qr; Br; Tr corresponding to the
right interval nm + 1 � n � n2,

{ compute P = PlPr, Q = QlQr, B = BlBr and
T = BrQrTl +BlPlTr.

Application of this algorithm to (1) starts with n1 = 0 and
n2 = N � 1. After this the �nal oating point division
S = T

BQ
is performed.

For example, in formula (2), a(n) = 205n2 + 250n + 77,
b(n) = 1, p(0) = 1, p(n) = �n5 for n > 0, and q(n) =
32(2n+1)5. In formula (3), a(n) = 126392n5 +412708n4 +
531578n3+336367n2+104000n+12463, b(n) = 1, p(0) = 1,
p(n) = �n5(2n � 1)3 for n > 0, q(0) = 10368, and q(n) =
24(3n+1)(3n+2)(4n+1)3(4n+3)3 for n > 0. In both cases,
b(n) = 1 and so we can eliminate B from the computation.

The trace of the binary splitting recursive calls can be rep-
resented by a binary tree. We will refer to this tree as the
1We used only one CPU in all experiments.
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binary splitting tree. The leaf nodes correspond to direct
evaluation of partial sums at the cut-o� level. The success
of the application of binary splitting to a particular evalu-
ation of a linearly convergent series is due to the fact that
at each node of the binary splitting tree integers of rela-
tively close sizes are multiplied. This provides a balance of
operand sizes to take advantage of asymptotically fast inte-
ger multiplications.

Before proceeding further we give two quotations charac-
terizing binary splitting: \If the multiplication was imple-
mented as an M(N) = O(N2) algorithm, the binary split-
ting algorithm would provide no speedup over step-by-step
evaluation" [5]. \It is perhaps worth underlining the obser-
vation that these acceleration methods apply only to the bit
complexity. The operational complexity is not reduced" [3].

2.2 Chains of recurrences and computation
unrolling

The chains of recurrences (CR) technique to accelerate com-
putations was described, for example, in [10]. The combina-
tion of this technique with loop unrolling applied to the com-
putation of products was described in [6]. In this paper we
will deal with chains of recurrences for polynomials, which
are in fact tables of �nite di�erences for polynomials taken
at �xed points with a �xed step. Given a polynomial pk(i) of
degree k, which we have to evaluate at i = a; a+h; a+2h; : : : ,
we represent this with CR

�(i = a; h) = f'0;+; '1;+; : : : ;+; 'k�1;+; 'kg(i = a; h);

where 'j is the jth �nite di�erence of pk(i) taken at the
point a with the step h. For example,

i = f0;+; 1g(i = 0; 1) = f3;+; 2g(i = 3; 2);

i3 � 2i+ 1 = f1;+;�1;+; 6;+; 6g(i = 0; 1)

= f1;+; 4;+; 48;+; 48g(i = 0; 2):

The last example suggests that by using this representa-
tion it is possible to compute the values of i3 � 2i + 1 for
i = 0; 2; 4; : : : at the cost of 3 additions at every point i. The
presence of the + signs in this representation is explained
by the fact that non-trivial chains of recurrences (for non-
polynomial expressions) can also have other operation signs
in place of +. For example, i! = f1; �; 1;+; 1g(i = 0; 1) =
f1; �; 2;+; 10;+; 8g(i = 0; 2). We do not give more de�ni-
tions on the interpretation and construction of CRs here,
because they can be found in the cited literature. What is
important here is that we are able to construct CRs from
the given input pk(i); i; a, and h eÆciently (often \almost"
multiplication-free as in [6]).

Given natural numbers N , � such that � j N and a sum

S(N) =

N�1X
n=0

f(n);

the unrolling of this sum by a factor of � transforms it into
the form

S(N) =

N=��1X
k=0

 
��1X
i=0

f(� � k + i)

!
:

The inner sum ~f(k; �) =
P��1

i=0 f(� � k + i) is subject to
additional transformations (such as normalizations, simpli-
�cations, etc.) in order to obtain it in the form

~a(k)
~b(k)

kY
i=0

~p(i)

~q(i)
:

It is straightforward to check that:
1) if S(N) was in the form (1) then such transformations
are always possible;
2) if S(N) was in the form (1) with b(n) = 1 then it is

possible to write ~f (k; �) such that ~b(k) = 1 also.

The outer sum
PN=��1

k=0
~f(k; �) is computed by binary split-

ting, in which the depth of recursion is blog2 �c less than it
is for the original sum.

For example, the sum (2)

1

2

N�1X
n=0

(�1)n �205 n2 + 250 n+ 77
�
((n+ 1)!)5 (n!)5

((2 n+ 2)!)5

after unrolling by a factor of 2 gives

2

N=2�1X
k=0

((2 k + 2)!)5 ((2 k)!)5 a(k)

((4 k + 4)!)5
;

where a(k) = 6710880 k7 + 29259440 k6 + 53729328 k5 +
53699400 k4 + 31429470 k3 + 10726375 k2 + 1968260 k +
149555:

2.3 On straightforward combination of tech-
niques

It seems worthwhile to try the following straightforward
combination of binary splitting, chains of recurrences tech-
nique, and unrolling:

1. Assume N = 2l �� (this guarantees the equality of the
number of terms at each branch of the binary splitting
tree on the cut-o� level).

2. Unroll the given sum by a factor of �:

2l�1X
k=0

~f(k; �):

3. Apply binary splitting to the last sum, using chains of
recurrences to compute the values ~f(0; �); ~f(1; �); : : : .

Observe that these chains of recurrences have the form

f'; �;  0;+;  1;+; : : : ;+;  �g
f ~'; �; ~ 0;+; ~ 1;+; : : : ;+; ~ ~�g

; (6)

where � and ~� are proportional to �.

Using (6) will reduce the number of multiplications to be
performed at the cut-o� level by a factor of �, replacing
them by a similar amount of additions.

Simple analysis of the distribution of the workload among
the levels of the binary splitting tree shows that the expected
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Formula (2) Formula (3)
Digits Size of T Time (s) Size of T Time (s) Speedup
10000 61278 1:85 57278 1:70 1:09
20000 132556 5:82 124115 5:54 1:05
40000 285111 16:79 267350 15:48 1:08
80000 610220 46:92 572941 41:75 1:12
160000 1300441 126:07 1222365 113:38 1:11
320000 2760884 326:05 2597699 304:74 1:07
640000 5841773 805:76 5501340 776:81 1:04

Table 2: Computation of �(3) by binary splitting.

Formula (2) Formula (3)
Digits Size of T Time (s) Size of T Time (s) Speedup
10000 45813 1:89 38716 2:33 0:81
20000 102382 6:55 76231 6:61 0:99
40000 224625 18:18 193964 17:90 1:02
80000 489069 48:03 426327 45:14 1:06
160000 1058137 117:55 926933 117:43 1:00
320000 2276859 299:46 2006774 286:69 1:04
640000 4873542 781:44 4319660 684:88 1:14

Table 3: Computation of �(3) by binary splitting, with gcd removed whenever 8 � n2 � n1 < 16.

savings in running time given by (6) are relatively small.
Indeed, let M(v) denote the complexity of multiplication of
two v-digit integers. Let L be the size of operands involved
in the computation on the (m + 1)th level of the binary
splitting tree. Then, on level m, operands will have size
approximately 2L digits. The cost of one multiplication on
level m+1 is M(L) and on level m it isM(2L). Level m+1
has twice as many nodes as level m. Therefore, the relative
workload on levelm compared to level m+1 is characterized

by the fraction M(2L)
2M(L)

. If Karatsuba multiplication [7] is used

(i.e. M(2L) � 3M(L)), then 3
2
more work is done on level

m compared to the work on level m+1. This means that to
some extent it does not matter how much time is spent on
the lower levels of recursion, since computational overheads
on upper levels are dominating.

If the complexity of arbitrary precision multiplication is al-

most linear (ideal case), we have M(2L)
2M(L)

� 1, which means

that the workload is evenly distributed among the levels
of the binary splitting tree. In this ideal case, in order to
save 50% of the running time we have to choose the cut-o�
level at half of the tree height, i.e. choose � � p

N . With
such a choice of � most of the saved time however will be
spent on the construction of chains of recurrences, which has
complexity O(max(�; ~�)2). This observation suggests that
brute-force combination of the described techniques will not
help much and additional preliminary analysis of the evalu-
ation of (1) is required.

2.4 On “faster and faster convergent series for
�(3)”

Fast convergence does not guarantee an \impressive"
speedup of binary splitting based on faster series. A faster
convergent series requires fewer terms to reach the needed

accuracy, but the sizes of the numerator and the denomina-
tor of each term are larger than they are in a slower conver-
gent series. This means that
1) each term is more diÆcult to compute;
2) combining terms involves multiplications of larger inte-
gers.

Consider (2) and (3). The second one converges faster by a
factor of about 5

3
. Our experiments show that the speedup

of binary splitting for (3) compared to (2) does not even ap-
proach this value. Table 2 presents the data obtained for (2)
and (3) with standard binary splitting. Table 3 gives similar
data for binary splitting with cancellation of the numerator
and the denominator by their gcd at the cut-o� level. We
remark that the size of Q can di�er from the size of T by at
most one digit.

2.5 How fast could it be in the “ideal” case?
If we restrict ourselves to computing �(3) by binary splitting
using formulae (2) and (3), the ideal case occurs when there
are no common factors in the intermediate results. That
is, gcd(P;Q; T ) = 1 at each step. This is also the ideal
case for any acceleration method based on the removal of
predicted common factors. In this section, we consider this
ideal case and examine the maximum possible improvement
in computation time, by removing all common factors at
every step in the binary splitting process.

Tables 4 and 5 present experimental results in the ideal case.
Columns 4 and 5 show the time and speedup if we assume
that the gcd is given to us by an oracle at no cost, but three
divisions are still performed to remove it from P , Q, and
T . Columns 6 and 7 show the time and speedup if we as-
sume that the oracle provides the reduced P , Q, and T at
no cost. In column 3 of the tables, we show the total com-
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GCD removed GCD ignored
Binary Splitting each step GCD ignored Division ignored

Digits Time (s) Time (s) Time (s) Speedup Time (s) Speedup
10000 1:85 41:43 1:36 1.39 0:76 2.43
20000 5:82 164:39 3:69 1.58 1:87 3.11
40000 16:79 656:48 11:47 1.46 5:12 3.28
80000 46:92 2643:92 35:93 1.31 12:85 3.65
160000 126:07 10586:09 108:63 1.16 33:94 3.71
320000 326:05 44621:85 285:57 1.14 87:16 3.74
640000 805:76 184625:19 762:23 1.06 208:02 3.87

Table 4: Ideal case for formula (2).

GCD removed GCD ignored
Binary Splitting each step GCD ignored Division ignored

Digits Time (s) Time (s) Time (s) Speedup Time (s) Speedup
10000 1:70 34:93 1:05 1.62 0:61 2.79
20000 5:54 137:50 2:88 1.92 1:52 3.64
40000 15:48 551:62 9:06 1.71 4:23 3.66
80000 41:75 2220:23 29:28 1.43 11:25 3.71
160000 113:38 8929:10 90:01 1.26 29:94 3.79
320000 304:74 36319:67 243:55 1.25 77:94 3.91
640000 776:81 149148:38 723:80 1.07 195:01 3.98

Table 5: Ideal case for formula (3).

putation time including the gcd computations and divisions,
and we see that the total computation time is dominated by
gcd computations. Experiments for larger numbers of digits
were not performed due to the exponential increase in the
amount of time required.

We see two trends from these results. First, if we ignore
only the cost of gcd computations, the speedup decreases as
the number of digits increases. This is due to the additional
three divisions performed at each step. We can conclude
that it is not suÆcient to obtain the gcd at no cost|we
must also be able to remove the gcd eÆciently. In other
words, acceleration methods based on the removal of pre-
dicted common factors alone are not suÆcient even if the
prediction is perfect and eÆcient. Second, if we also ignore
the cost of divisions, the speedup slowly increases because
of the reduced sizes of the operands.

3. PARTIALLY FACTORED
REPRESENTATION OF INTEGERS

We now consider an alternate representation of integers,
called the partially factored representation. Let p1; : : : ; pm
be the �rst m primes. An integer X is represented as

X =

 
mY
i=1

p�i

i

!
x; (7)

where �i � 0, and x, called the standard component, is in
standard representation. We will further assume that �i can
be represented in the single-precision integer type provided
by the machine, so that additions and subtractions of ex-
ponents take constant time. Since pi can be precomputed
and stored in a table, only the �i's need to be stored in an
exponent vector. We will simply write the representation
as (~�; x). Ideally, we would like to have gcd(pi; x) = 1 for
all i, but it is not required in our representation. In the
degenerate case, ~� = ~0 and we essentially have the standard
representation.

The conversion of integers from standard representation to
the partially factored representation is performed by trial
divisions by each pi, until gcd(pi; x) = 1 for all i. The
conversion in the other direction is performed by computingQ
p�i

i and then multiplying the result by x.

Multiplication (division) of partially factored integers is per-
formed simply by the addition (subtraction) of the expo-
nent vectors, together with the multiplication (division) of
the standard components. When the standard components
are small, multiplications and divisions become signi�cantly
faster. Note that if gcd(pi; x) 6= 1 for some i, some �i may
become negative after a division even though the division is
exact. Since binary splitting does not require divisions, this
does not occur in our applications.

To compute (~�; x1) � (~�; x2), we �rst compute the gcd of
the exponent part, ~, where i = min(�i; �i). The result

is then (~; x), where x =
Qm
i=1 p

�i�i
i x1 � Qm

i=1 p
�i�i
i x2.

Thus, the gcd of the exponent vector is removed and the
remaining integers are converted to standard representation
before addition or subtraction takes place. Divisions by 2
(involving only shifting) are performed on x to reduce the
size of the standard component. However, divisions by other
primes are not performed as trial divisions are too costly for
our applications.

This representation is motivated by the need to remove com-
mon factors eÆciently. First, multiplications and divisions
preserve the partial factors, while additions and subtractions
preserve as many partial factors as possible without signif-
icant computation. As a result, common factors among in-
termediate results can be removed simply by inspecting the
exponent vectors. No standard gcd computation, multipli-
cation, or division is required. In e�ect, partial factoring
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Figure 1: Computation time for formula (2) as pm varies.
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Figure 2: Computation time for formula (3) as pm varies.

is performed on small initial operands, and the multiplica-
tions of the partial factors into the standard components are
delayed until they are necessary. The delay allows common
factors to be removed easily. The ideal case occurs when the
integers have only small prime factors. We see from formulae
(2) and (3) that both p(n) and q(n) have many small prime
factors, and this representation can be helpful in reducing
the bit complexity of the binary splitting process.

The cost of multiplications and divisions of integers in this
representation is dominated by the cost of multiplying and
dividing the standard components. By partially factoring
the integers, we are able to reduce the size of the standard
components, and hence the cost of multiplications and di-
visions of integers. The memory requirement for the com-
putation of (1) is also reduced, allowing more terms to be
computed when the amount of physical memory is �xed.

The drawback of this representation is that as m increases,
the cost of conversions increases. As a result, the cost of ad-
ditions and subtractions also increases as they involve con-
versions from partially factored representation to standard
representation. Furthermore, there is a point of diminishing
return. The probability of any given integer having a large
prime factor is much less than the probability of it having
a small prime factor. Therefore, making m too large is un-
likely to be useful unless the given integers have some special
properties.

We also remark that there is no need for p1; : : : ; pm to be
the �rst m primes. Any choice of m primes can be used,
and this may be useful for some applications.

4. APPLICATION OF PARTIALLY
FACTORED REPRESENTATION
TO THE COMPUTATION OF �(3)

In this section, we show the result of applying the partially
factored representation of integers to the computation of
�(3). In each of our experiments, the computation is per-
formed in the same way as in standard binary splitting, ex-
cept that the partially factored representation is used to rep-
resent intermediate results. Also, the gcd of the exponent
vectors among P , Q, and T is removed after each step. This
is only necessary to prevent the overow of the exponents,
and is not necessary for reducing the sizes of the standard
components as the common factors in the exponents are re-
moved before additions and subtractions. At the �nal step,
the gcd of the exponent vectors of T and Q is removed, and
the two integers are converted to standard representation.
This is followed by a division to obtain the oating point
result.

In our experiments, we used m = 574 (all primes less than
4200) for formula (2) and m = 503 (all primes less than
3600) for formula (3) in the partially factored representation.
This seems to give a good trade-o� between reducing the size
of the standard components and the conversion overhead, as
shown in Figures 1 and 2. Furthermore, these choices of m
work well with the di�erent numbers of computed digits of
�(3) used in the experiments. We see from the �gures that
the \optimal" value of m is not signi�cantly a�ected as the
number of digits doubles.

The di�erence in the choice of m for the two formulae is due
to the fact that there are more small common prime factors
in p(n) and q(n) in formula (2) than there are in (3). As m
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Formula (2) Formula (3)
Digits Size of T (digits) Time (s) Size of T (digits) Time (s)
10000 14398 1:34 14080 1:32
20000 29378 3:11 31601 3:21
40000 70146 8:04 75823 8:29
80000 171019 21:23 183326 21:77
160000 412254 53:86 436265 54:91
320000 975188 136:04 1018575 138:15
640000 2260445 348:57 2335702 355:24

Table 6: Timing results using partially factored representation of integers.

Formula (2) Formula (3)
Digits Size of T (digits) Time (s) Size of T (digits) Time (s)
10000 14398 1:18 14080 1:29
20000 29378 2:84 31601 3:14
40000 70146 7:47 75823 8:14
80000 171019 20:05 183326 21:48
160000 412254 51:64 436265 54:41
320000 975188 130:68 1018575 136:43
640000 2260445 342:68 2335702 355:07

Table 7: Timing results using partially factored representation of integers, as well as chains of recurrences
for a(n).

increases, the cost of the conversion to standard represen-
tation increases quickly since the number of multiplications
required increases. As a result, the cost of additions also
increases. An analysis of the computation shows that the
most time consuming part of the computation is the addi-
tion in T = QrTl+PlTr. Approximately 60% of the time to
compute �(3) to one million decimal digits by formula (2)
is spent on conversions to standard representation during
additions.

Table 6 shows the result of applying the partially factored
representation to formulae (2) and (3). Comparing against
the results in Table 2, we see that the partially factored
representation achieves a speedup of 2.31 for formula (2)
and a speedup of 2.19 for formula (3). We see that this is
twice as fast as the case given in columns 4 and 5 of Tables 4
and 5, in which the cost of gcd computations is ignored but
the cost of divisions is not. The speedup still compares
favorably to the ideal case in which the cost of divisions is
also ignored.

We also observe that using the partially factored represen-
tation with formula (2) results in a faster algorithm than
using it with the \accelerated formula" (3). This is due to
the fact that a(n) is larger in formula (3), and so T is also
larger as we do not perform trial divisions on the standard
component after additions.

Table 7 shows the result of also applying chains of recur-
rences to the computation of a(n) in each term. We see
that chains of recurrences reduce computation time by a
small amount for both formulae. In both cases, the time
required to compute a(n) is small compared to the total
computation time, so only a small improvement can be ex-
pected. We also see that the improvement in formula (3) is

much less, because the proportion of time used in comput-
ing a(n) is smaller in this case. Nevertheless, the operational
complexity is reduced.

5. UNROLLING AND
UNROLLING TRADE-OFFS

In this section, we discuss the application of unrolling to
formula (2). The unrolling of formula (2) by a factor of �
gives

�(3) �
N=��1X
k=0

a(k) ((�k + �)!)5 ((�k)!)5

((2�k + 2�)!)5
; (8)

where a(n) is a polynomial of degree 5�� 3. Since the con-
struction of CR for a(n) has complexity O(deg(a(n))2) [10],
there is a limit at which the construction time for CR erases
the speedup obtained by unrolling.

Table 8 shows the results of unrolling formula (2) for vari-
ous unrolling factors � (� = 1 means no unrolling), assum-
ing that the CR for a(n) has been precomputed2. Unrolling
not only allows simpli�cation of the unrolled terms, but also
reduces the number of additions in the binary splitting pro-
cess by a factor of �. As additions in the partially factored
representation are costly, the reduction in computation time
can be signi�cant. For computing 640000 digits with an un-
rolling factor of � = 16, a speedup of 2.65 is achieved over
standard binary splitting.

However, unrolling by a large factor � leads to larger sizes of
T and Q. This is due to the fact that the CR computes val-
ues of a(n) in standard representation, and no trial divisions

2We remark that this precomputation does not take longer
than 0.5 seconds with a C++ implementation [6].
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Digits � = 1 (s) � = 2 (s) � = 4 (s) � = 8 (s) � = 16 (s)
10000 1:18 0:94 0:79 0:69 0:61
20000 2:84 2:34 2:02 1:82 1:70
40000 7:47 6:46 5:82 5:42 5:23
80000 20:05 18:02 16:68 16:04 15:55
160000 51:64 47:48 44:79 43:53 42:97
320000 130:68 122:35 116:94 114:31 113:75
640000 342:68 324:79 309:71 303:97 302:98
1280000 886:70 854:07 835:60 813:81 820:53

Table 8: Timing results for unrolling formula (2) by a factor of �, with chains of recurrences for a(n).

are performed to reduce the size of the standard component.
As a result, both the binary splitting process and the �nal
oating point division may be slower. This explains the in-
crease in computation time for 1280000 digits of �(3) when
� is increased from 8 to 16.

Experiments have shown that unrolling formula (3) does
not give signi�cant improvements. Unrolling formula (3)
leads to terms that are more complicated. By unrolling
formula (2), we achieve an \accelerated formula" that con-
verges faster than formula (3). It is also more suitable to our
algorithm than formula (3) because the numerator and the
denominator have more small prime factors. Thus, unrolling
a simpler formula can lead to faster computation than using
a formula with a faster convergence.

6. CONCLUDING REMARKS
We have shown that predicted cancellation techniques alone
are not suÆcient to accelerate the computation of sums of
products of rational numbers. This motivates the partially
factored representation which allows the computation and
removal of common factors eÆciently. The speedup pro-
vided by this representation is signi�cant. When unrolling
and chains of recurrences techniques are combined with the
partially factored representation, even better improvements
can be obtained. The three techniques presented reduce
both the operational and bit complexity of (1), which is
supported by our experimental results. For the range of
decimal digits computed in our experiments, we can com-
pute 2N digits of �(3) with our accelerated methods in the
time required by standard binary splitting to compute N
digits. In addition, the memory requirement for the compu-
tation is reduced. This technique can also be applied to the
evaluation of other linearly convergent series. Preliminary
experiments show that applying some of the techniques to
the evaluation of 1=� to 50000 decimal digits using formula
(4) gives a speedup factor of 6 over the standard binary
splitting algorithm.

When asymptotically fast multiplication is not available (as
in the Java Development Kit), the speedup is even more
impressive. For example, we achieved a speedup of 11.4
compared to standard binary splitting for the computation
of �(3) to 80000 digits, when the Fast Fourier Transform
and Karatsuba multiplications were disabled.

It is easy to see that the binary splitting algorithm is paral-
lelizable. Up to a certain level of the tree all computations
associated with every subtree of this level can be done in

parallel. This is used in [5, 9]. None of our improvements
damages this property of the computations. Moreover we
can �nd more opportunities for parallelism in the acceler-
ated scheme. First, computations with chains of recurrences
can be performed in parallel. Second, the partially factored
representation of integers provides more possibilities for par-
allelization of basic arithmetic compared to the standard
representation because all operations on exponent vectors
can be performed componentwise.
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