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Abstract

Let an Ore polynomial ring k[X; a, 6] and a nonzero pseudo-
linear map 19: K + K, where K is a O, &compatible exten-

sion of the field k, be given. Then we have the ring k[O] of op-
erators K ~ K. It is assumed that if a first-order equation
Fg = O, F ~ k[9], has a nonzero solution in a u, b-compatible
extension of the field k, then the equation has a nonzero
solution in K. These solutions form the set %,t C K of hy-

perexponential elements. An equation Py = O, P ~ k[O], is

called completely factorable if P can be decomposed in the
product of first-order operators over k. Solutions of all com-

pletely factorable equations form the linear space dk C K
of d’Alembertian elements. The order of minimal operator

over k which annihilates a G ~k is called the height of a. It
is easy to see that %k C J& and the height of any a C %k

is equal to 1.
It is known ([12, 4]) that if L E ,k[@] and ~ G ‘?-l~ then all

the hyperexponential solutions of the equation

Ly=f (*)

have the form uf, u G k. Substitution y = uf, where u is a
new unknown, gives us the equation

Mu=g, Mek[O], g~k. (**)

If all the solutions of (**) in k are found, then all the hy-
perexponential solutions of (*) are found as well. The prob-
lem of solving in k an equation whose coefficients and the

right-hand side belong to k, is called the k-problem. Fast
algorithms to solve k-problems are known for some concrete
Ore polynomial rings (e.g., such algorithms for linear ordi-
nary differential and (g-) difference equations with rational

functions coefficients and right-hand sides have been given in
[1, 2, 4]). They allow us to find hyperexponential solutions
of the equation (*) quickly.

We consider in this paper the search for d’Alembertian

solutions of an equation of the form (*) with f ~ .4k (the
height of ~ is r ~ 1). We show that in general case the

*Work reported herein was supported in part by the RFBR (Rus-
sia) under Grant 95-01-0113Sa.

Permission to make digital/hard copies of all or part of this material

for personal or classroom use is granted without fee provided that the

copies are not made or distributed for profit or commercial advantage,

the copyright notice, the title of the publication and its date appear,

and notice is given that copyright is by permission of the ACM, Inc.

To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires specific permission and/or fee. ISSAC’96, Zurich,

Switzerland; @1996 ACM 0-S9791-796-0/96 /07. ..$3.50

search can be reduced to k-problems and to the search for
hyperexponential solutions of homogeneous equations of the
order ~ ord L over k. If the equation Ly = O has no hy-

perexponential solution then the search for d’Alembertian
solutions of (*) can be reduced only to k-problems. If (*)
has a solution of the height r, then solving only k-problems
one can find a solution of the height ~ r. We describe some
algorithms and an implementation in Maple 5.3 of one of

them. The implementation is oriented towards an arbitrary

Ore polynomial ring and can be adapted, for example, to

the differential and (q-) difference cases.

1 Basic notions and formulation of problem

Linear inhomogeneous equations of the form

Ly=f (1)

which we will consider can be, for example, ordinary differ-

ential, difference or q-difference equations. The general ap-
proach to such equations is possible in the frame of pseudo-
linear algebra ([9]) which has been formed on the base of

Ore polynomial rings theory ([1 1]). Considering equation

(1) we assume that L is an operator of the form p(d), where

p(X) belongs to Ore polynomial ring k[X; u, 6], and O is a

pseudo-linear map K + K of a u, &compatible extension
ring K of the field k. Here k is a field of characteristic O, X
is an indeterminate over k, u is an aut omorphism of k and

6: k + k is a map satisfying

J(a + b) = Ja + db, J(ab) = a(a)M + da b;

in turn, 0 satisfies

@(a + b) = (la+ 6%, ~(ab) = a(a)6b + ~a b,

We will denote by Const(K) the constant subring of K

(i.e. the set of all a c K such that a(u) = a, Ja = O) and
assume that K is such that Its constant subring is a field.

We can consider the ring k[~] of operators K -+ K of the
form p(6), p(X) E lc[X; a, 6]. These operators are linear over
ConSt(K).

It is assumed that if a first-order equation Fy = 0, F E
k[6], has a nonzero solution in a a, &compatible extension

of the field k, then the equation has a nonzero solution in
K. These solutions form the set %k C K of hype?’exponen-
tial elements. An equation Py = O and the operator P are
called completely factorable if P can be decomposed in the

product of first-order operators over k. Solutions of all com-
pletely factorable equations form the linear space & C K
of d’Alembertian elements. It is easy to see that %h C Ah.
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Let L ~ k[e] and S be the space of solutions of Ly = O

belonging to K. We assume that dim S < ord L in such
sit uation.

The following notions generalize those that have been
used in [3] for an investigation of d’Alembertian solutions of

differential and difference equations:

● the operator V, which is an analog of $ and A:

It is easy to show that V f = O @ f E Const (K);

● the set 1(f), f G K, which is an analog of the indefinite

integral and sum:

I(f) = {d [ Vd= f}.

If f E K’, d ~ I(f), c. c Corzst(K), then d+co G I(f)

and, vice versa, for any dl, dz G I(f) we have dl – dz ~
Const(K). We assume that 1(f) is not empty for any

f = K. If a d’Alembertian space A is given, then
we can construct the completely factorable operator
over k such that A is its solution space. If U is a set

of elements of K, then 1(U) denotes the set of all d

such that Vd E U. We write for brevity I(fl, . . ., f~)
instead of flI(fzI(fs . . . f~–l~(f~). . .));

● d’Alembert substitution

y = ffI(u) (2)

connected with a solution p of a linear equation Ly =
O. This substitution reduces the order of the equation.

The search for d’Alembertian solutions can be reduced

to the search for hyperexponential solutions and to

d’Alembert substitutions;

. d ‘A lembertian space

1($01, . ..)$%.. O),

where PI, . . ., p. 6 %h. Any d’Alembertian space is
the solution space of a completely factorable operator,

It is easy to see that

1(91,0) cI(yYl, f@2,0) c . . . Cqql,..., p,, o).

Let k = C(x), o = 1 (the identity authomorphism),
6 = 6’ = d/dx. Then sin x 6 dh, because

eax— e–z”
sin x =

2i //
E e’z e–2iz O= I(e’z, e-ziz, O).

We can define concretely the integrals for sin x:

“’u”e-z’’({o+’)+o)‘e’xlze-z’”

sin x satisfies the completely factorable equation y“ + y = O.

Let k = C(Z), a = 0 = E (the shift operator), 6 = O.
Observe that E is not an authomorphism of a ring of se-
quences, since it annihilates nonzero sequence of the form
(c, 0,0,.. .), c # O. But we can identify any two sequences
which agree from some point on. To simplify notation, we
will identify a class {u} of equivalent sequences with its rep-
resentative sequence u.

For Fibonacci numbers u~ we have u~ 6 dk becau~se

We can define concretely the sums for u~:

(if the upper bound of a sum is less than the lower one
then the sum is equal to zero). The sequence of Fibonacci
numbers satisfies the completely factorable equation E2y –
Ey–y=O.

It can be shown that the sum and the product of any

two d’A1embertian elements are d’Alembertian themselves.

So, dh is a ring, all hyperexponential elements are invertible
in the ring. The consideration of the difference case shows

that ~k can have zero divisors. Let am = 1 + (–l)m, b,. =

1 – (– 1)’”. These sequences satisfy equation E2y – y ❑= O,

therefore am, b~ E ~k. But ambm = O.

For any two nonzero operators L, M ~ k[e] one can com-
pute their greatest common right divisor gcrd(L, I@ E k[o].
If at least one of L and &f is completely factorable then

gcrd(L, M) is completely factorable too.
It is known ([3]) that if L E k[d], a ~ dh, p C fik then

La c ~k and there exists v E k such that Lp = vq? ~

?i!k; additionally the following properties of d’Alembertian
elements take place:

dA1. Let the equation Ly = O, L E k[O], have a solution

in dk. Then this equation has a solution in %!!c.

dA2. Let A = I(pl ,.. .,pT,O), where 91, prG?ik G?ik.
Let &l c A fl %h. Then there exist ~z,... , ~. E ~k such that

A= I(.$l,..., &,o).
Considering equation (1) we will suppose that f G dk

and that the minimal d’Alembertian space in which f can
be expressed (the envelope of f) is given. If we know the
envelope of f then it is easy to construct minimal anni-

hilating operator P E k[(l] for f (and vice versa, but such
construction requires the search for hyperexponential soiu-
tions of homogeneous equations). Further we will denote the
envelope of f by &(f). It is easy to show that the envelope

of a nonzero d’Alembertian element f is unique, and that
the minimal annihilating operator is unique up to a nonzero

factor from k. The dimension of S( f ) is called the heighi of

f (it is equal to the order of minimal annihilating operator)
and will be denoted by h(f). The height of the zero element

is equal to 0.
When working with a d’Alembertian element ~, we con-

sider its envelope and minimal annihilating operator. This
is analogous to working with algebraic numbers and func-
tions, when we consider the corresponding extensions of the
ground field and their minimal polynomials.

The problem of finding all d’Alembertian solutions of

equation (1) has been considered in [7] for differential, clif-

ference and q-difference equations. This problem has been
solved with the help of the standard method of transition
from equation (1) to the homogeneous equation

PLY = O (3)

(P is the minimal annihilating operator for f ). Any solution

of equation (1) satisfies equation (3) and for any solution y of
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equation (3) we have Ly = f, where P~ = O. Let ord L = n

and h(~) = r. It is sufficient to find the space A of dimension
s s n + r of all d’Alembertian solutions of equation (3) and
choose those solutions from A which satisfy (1). This choice
is described in [7] differently for each of the three above-

mentioned types of equations. But, in fact, it can be reduced
to equating the values of Vly and Vtf for 1 = O,. ,s – 1 at
a point p which is nonsingular for the equations considered
(in the differential case this is equivalent to consideration of
the first terms of Taylor expansion in the neighborhood of a

nonsingular point).
The standard method just mentioned requires the search

for hyperexponential solutions of homogeneous equations

whose order greater than the order of the initial equation.

When k is the field of rational functions, algorithms to
find hyperexponential solutions of differential ([8]), differ-
ence ([12]) and q-difference ([6]) equations aI e known. All

these algorithms are quite laborious: they require, for ex-
ample, the complete fact orization of polynomials, separate
considerations of several hypothesis about the form of solu-
tion; it is necessary to work with algebraic numbers even if
k = Q(z) or k = Q(q, z).

The goal of this work is to minimize the search for hy-

perexponential solutions of homogeneous equations in the
process of finding d’Alembertian solution of (l). We will

propose some algorithms which have some advantages over
the standard method. However using the standard method

let us easily prove one important feature of d’Alembertian

solutions.

Proposition 1 Let f on the right of (1)be of height r. Let

(1) have a solution a ~ A~ such that h(a) > r. Then the
homogeneous equation Ly = O corresponding to (1) has a
solution in Xh.

Proof: Consider the space A constructed by the standard
method. The fact that h(a) is greater then r means that
dim A > r. Hence, it is possible to find al, az ~ A such that

al # az and Lal = Laz. The latter equation means that
L(al – az) = O. With the help of dAl we get the desired

conclusion. •1

A possible approach to the construction of d’Alembertian

solutions of equation (1) is based on the following fact. Let

j E %h. If (1) has a solution in ~k, then this solution must
be of the form uf, u ~ k. After the substitution y = u~,
where u is a new unknown, and simplifications we get

Mu=g,kfek[o], gek. (4)

Thus the question about existence in %h of solutions of the
initial equation is reduced to the question about existence in

k of solutions of equation (4). This fact was initially stated
in [12] for difference equations and was than generalized to

the case of an arbitrary Ore ring in [4]. We will call the

k-problem the problem of searching in k for solutions of an
equation of the form (4). Hence, the search in $% for SOlu-
tions of equation (1) with f ~ fih is reduced to a k-problem.
There exist fast algorithms to solve k-problems for differen-
tial, difference and q-difference equations when k is the field
of rational functions ([1, 4, 5]). To generalize this approach
(which can be called the method of reduction to k-problems)
to the case of d’Alembertian right-hand side, we will discuss
in detail the following task:

T. Let (1) have a d’Alembertian solution and Z(j) be of

the form

~(til, . . ..?h.o), (5)

$,,... ,$, G Zk. Decide whether the equation

LY = &(f) (6)

has a solution in the class of d’Alembertian spaces, or not,

i.e. whether there is a d’Alembertian space A of the form

LA= E(f), (8)

or not. If A exists, construct P1, . . . . q,.
Obviously, if (8) takes place, then s ~ r. If s > r then

the homogeneous equation of order n

Ly=O (9)

has a hyperexponential solution. We will show that the

search for some spaces A (and for the maximal A) satis-
fying (8) can be reduced to k-problems and to the search

for hyperexponential solutions of homogeneous equations of
order ~ n. The corresponding algorithms will be given in
details. With additional assumptions about equation (1) or
(8) one needs no search for hyperexponential solutions of
homogeneous equations (some algorithms of this kind will

be described).
Equation (1) is of the main interest to us. We will show

further that if (1) has a solution a E Ah then for some

d’Alembertian space A equation (8) is satisfied. Therefore

solving equation (1) can be reduced to the task T and to

the search in A for an element satisfying (1).

2 Equations in the class of d’Alembertian spaces

First of all we clarify how to apply the operator L G k[~] to
the space A of the form (7) defined by pl, . . . . ~T. We will see
that the result of this application is a d’Alembertian space

again. Below, we will describe the process of this application
recursively, reducing it to the application of another oper-

ator to the space 1(p2, . . . . pr, O). In order to describe this

reduction more concisely, we define the operator L[’fl c Ic[O]
for p 6 %h and L 6 k[6]. Consider T = L o p (we use the

sign o here having in mind the product of operators L and

p). It is easy to show that

(lo)

where ~ is some operator with coefficients from %k and Lp
means as usually the result of applying L to p. Let

{

+T, if Lp = O,

T=

V~T, if Lp # O.

(11)

In any case ~ G k[~]. We define LIP] from the operator
equality

~ = L[9]v,

which is solvable in k [6] because of (10). We can see that

{

ord L, if Lp # O,
ord LI$’I =

ord L—1, if Lp = O.

~ practical way to construct L[P] is the following. Compute

T G k[6] according to (11) and take the right quotient of ~
by V (for this purpose the operator V has to be represented

as an element of k[~]).
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Using operators of the form LIP] we can prove by induc-
tion on s that L1(pl, . . . . p$, O) is a d’Alembertian space and

describe the process of its construction. We will concentrate

on the process of construction. Let

where ~1, . . . , (t ~ Nhl t ~ O. By definition of L[W’] we have

Proposition 2 Let pl, . . ..ps. $1, $. .,$. ~~h,s ??’. Let

L c k[9].
If Lpl = *1, then

LI(pl,. ... ps, O)= I(@l, @r,0)~, O)~

~LIvl]I(p2, . . ..p.,O) =1(42, tiT,0)T,0).
(13)

If LPI = O, then

LI(v1, . . ..9s.0) =1(+1,.. .,+,,0)+
& L[~ll I(14w ,.. ,9s, o)= I(@l/P1, ti2,. ... @r, o).

(14)

Proof: In both the cases

=: by definition of L(WI ].

~: with the help of (12). ❑

Observe that in the case where Lyu = O the transforma-

tion of (9) into LIP’lV = O, or of (1) into L[v’]g = f/~l, is
equivalent to D ‘Alembert substitution (2).
Proposition 3 Let (1) have a solution a c Ak such that f

and a have the same hezght r. Let A = &(a) and B = &(f).
Then LA=B.

Proof: The space L A is d’Alembertian, dim L A s r. The
space L A fl B is not empty, because f c L A n B. This
intersection is a d’Alembertian space (it follows from the
existence of gcrd in k[O]). It is obvious that if L A # B then
dim(L A n B) < r which contradicts the fact that B = g(f).
❑

Proposition 4 Suppose that equation (1) has a solution

a G dh while equation (9) has no solution in ~h. Then the

space A = &(a) (dim A = r) is the unique solution of equa-

tion (6) in the class of d’Alembertian spaces. If al e Ak
and al fl A then Lal f B.

Proof: Due to Proposition 1, h(a) = r. The space A is a
solution of equation (6) due to Proposition 3. Finally, equa-
tion (6) has no solutions except for A because otherwise
it would be possible to find two different d’Alembertian el-

ements al, az such that Lal = Laz. The latter equation
means that al — az solves (9). But al — az c Ah and equa-

tion (9) has solution in Nk due to dA1. Contradiction. ❑

Let (9) have a solution pl ~ tik. Transform (9)

into L[vlly = O. Assume the new equation is trans-
formed again using its solution 92 and so on, until the last

d’Alembert substitution connected with pm produces the

equation LIPll”””[P~]y = O (L~y = O, for brevity) with no
solution in %k. It is known ([3]) that the operator Lm is

unique up to a nonzero factor from k.
Inhomogeneous equation (1) (for which (9) is the cor-

responding homogeneous) will be transformed in this way
to

L~y = f (15)
P1. ..wn’

The following proposition does not depend on the exis-

tence of solutions of (9) in ‘?-1~.
Proposition 5 Let (1) have a solution a G Ak. Let B =

t(f). Then the set

D={d\de Ak, Ld6B} (116)

is a d’Alembertzan space.
Proof: Assume that (9) has been transformed with the help

Ofpl, . . . , pm as described above, and let equation (1) be
converted to (15) (if the initial equation Ly = O had no solu-

tionin%h then m= Oand Lm =L). Let B = 1(+1,...,+,)

be &(f). The space

5= 1 B=I( “ ,@2,..., &,o)
f#l. ..v7n PI . ..y%n

is equal to ~(~), where ~ is the right-hand side of (15),

i.e., f /(pi . . pm), because if P is a minimal annihilating

operator for f then the operator

1
V1. ..%npo

pl. ..$%n

is a minimal annihilating operator for ~. Due to Propo-

sition 4 the equation L~ Y = B has the unique solution

G = J(fl,. . . . ~,, O) in the class of d’Alembertian spaces and

if d @ G then L~d @ B. Therefore

D= I(pl,. ... y7m, gl, &?. ,o)., o) (17)

❑

Corollary 1 If (1) has a solution ainAk then (6) has a

solution in the class of d ‘Alembertian spaces (for example,
space (16)). Any space whtch satisfies (6) includes a solutzon

of (1).

It is easy to see that if Lpl = 41 then V(a/y,l )

is a d’Alembertian solution of LIW1] = V( f /~1 ) and

1(42,. ... ?A, O) = ~(v(f/41)) If Lpl = O then

V(a/pl ) is a d’Alembertian solution of L[v’] = f/@ 1,

and 1(41/P1, @z,..., @Jr,O) = &( f/@l). In both the cases

we obtain simpler equation L[P 11Y = B1, where B1 is

~(+2,.. ., llr, 0) or 1( V1191, @2,. . . , +,, O) respectively, im-
stead of equation LY = B of the form (6).

Thanks to Corollary 1 we have the following

Corollary 2 Let (1) have a solution a G Ah. Let B = &(f )

in the equation LY = B. Let this equation be tram-

formed into LIP’] 1P’”I% = B~ by transformations described

above. Then the last equataon has a solution in the class of
d ‘Alembert~an spaces. If we know a solution of this kind
then we can use formulae (13), (14)and get a solution of
LY = B.

Proposition 6 Let (9) have no solution in fik. Let the
equation LY = I(@l, . . . . ~., O) have a solution A in the

class of d ‘Alembertian spaces. Then the equation Ly = ~1
has a SOh.daOn an ~k.

Proof: There exists a c A such that La = @l. It follows frc,m
Proposition 4, that dim &(a) = dim &(@l ) = 1. Therefclre

a ~ ~h. ❑

Corollat-Y 3 Let (i) ha.. a d lAlembe.ticzn s.lu$i.n and

S(f) = I(@l, . . . . @,, O). Then at least one of equatzons
Ly = O, Ly = $1 has a solution in ~h.

Corollaries 1-3 are the key results of this section. They give
a base for designing algorithms to find solutions of (6) and
of (l).
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3 Algorithms

We consider equations (1), (6) with E(t) given in the form

(5). Our goal is the minimization of the search for solutions
in ‘U~ of homogeneous equations like (9) in the process of
solving equation (6). If (9) has no solutions in %k then one
can use a very simple algorithm. In its description we will
use the operations head(B) and tail(B): if B is given in the
form (5), then head(B) = VI, tail(l?) = 1(@2,.. ., Or, O).

Observe that the representation of d’Alembertian space
in form (5) is not unique, but the algorithm below treats (5)

as a fixed Collection Of elementS @l, . . . . v, E %k. Strictly

speaking, the operations head and tail are operations not
over spaces, but over these collections of elements.

If r G %k then,~B will denote 1($,4,,... ,@~, O).

Our algorithm 1s applied to

L, B, r,

where L ~ k[(3], B = &(f) is of the form (5), r = dim B.
Algorithm 1
1. If ord L = O, i.e., L is some q G k, then the result will

be ~B.

2. Let ~ = head(B). Reduce the equation Ly = @ to a

k-problem. If the k-problem has no solution, the algorithm

stops with the result “no solution”.
3. Let u E k be a solution of k-problem. Let q = u@. If

r = 1 then the result will be l(p, O), else apply the algorithm
recursively to

L[v], tail(B), r – 1.

4. If the result of the recursive call was “no solu-
tion” then the final result will be the same. Otherwise, if

the result of the recursive call was a d’Alembertian space

l((l,. . . , ~~, O), then the final result will be 1(9, ~1,. . . . f,, O).
❑

Consider as an example the equation of the form (6)

//
(.’g-x)Y=* ~ o,

x
(18)

with k = C(z).

Here L = $ –x. The equation Ly = O has no solution in

%!k. Reduction of the equation LIJ = VI, where tjI = ~

to a k-problem gives us

16z6 – 8Z3 – 15
u“ (z) + u(x) = 1.

3(4x3 – 1, u’(z) – 4Z2(4z3 + 1)

Z(4X3 + 1)

This equation has the unique solution u = –4x2/(4x3 + 1) in

k, which is why ~1 = u*1 = –4@. Further computations

give us the k-problem

4S(8Z3 – 1) ,_*u’’(x) + (4X3 + 1)2
4Z3 + 1

u (z) + u(x) = 1

wit h the unique solution 1 and 92 = 1/x. The final result is

Using Corollary 2 we get the following
Proposition 7 Let (1) have a solutton in dk. Let the equa-

tion Ly = O have linearly independent solutions V1, . . . . vi E
‘h!k and the equation Ly = 41 have a solution p. Let

xl = V1, X2 =v(v2/xl),. ...

xl = V(. .v(w/xl) ./xl-l),

ff=v(... v(xl)lM).. /M).

Then the equation (6) has a solution
d ‘Alembertian spaces iff the equation

L[x,] .[xJIvIY = 1(+2,...,@.,())

(19)

in the class of

(20)

has a solution in this class. If I(fl, . . . . <t, O) is a solution

of (20) then

1(x1,. . . ,Xt, w,tl,..., gt>o)

is a solution of (6). ❑

Now let the k-problem (4) correspond to the equation Ly =

~. Let ii c k be a particular solution of the k-problem and
el, . . . . et be a basis of all the solutions belonging to k of the
equation

Mu = o. (21)

Then wecanset ul=el@,..., vl=el*, ~= Ifl>O>O

then instead of using the formulae (19) it makes sense to

compute .v=~,wl=~, ....u)l_l=2
el el el

and then compute X1, . . . . xl, p as follows:

XI = .514,
X2 = V(wl),
X3 = v(v(w2)/x2),

(22)
. . .

xl = V(. ~.v(v(7J&l)/x2) ~.)/xl-l),
p = V(. .v(v(w)/x2). ..)/xl).

Ifl=Othenp=ti@.

The last computational formulae let us formulate the fol-
lowing version of the algorithm:

Algorithm 2

1. If ord L = O, i.e., L is some q G k, then the result will

be ~B.

2. Let @ = head(B). Reduce the equation Ly = * to a
k-problem. If the k-problem has no solution, the algorithm
stops with the result “no solution”.

3. Let ii be a solution of the k-problem, and
cl, ..., et (1 ~ O) a basis of all solutions in k of the equa-
tion Mu = O, which is the homogeneous counterpart of the
k-problem. Construct X1, . . . . xl and p according to (22). If
r = 1 then the result will be l(x1, . . . . Xl, p, O), else apply
the algorithm recursively to

LIxII [xi][Pl, ~all(B), T – 1.

4. If the result of the recursive call was “no so-
lution]] then the final result will be the same. Oth-
erwise, if the result of the recursive call was the

d’Alembertian space 1(C1,. . . . (~, O), then the final result will
bel(X~,..., X~, p,&~, fi, O)i, O). c1

This version of the algorithm again does not use the
search for hyperexponential solutions of equations of the
form (9). Consider the differential case. Let

k= C(z), L=~
/

–2~+ l,&(f) =e” O.
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The equation Lg = em produces the k-problem u“ = 1. We

take ti=~z2, e1 =1, ez=z. Thus Xl =em, Xz=l, p=l

and we get the following solution of equation (6):

///
eZll O,

i.e., the space eZ(clx2 +C2Z+C3), where C1, C2, C3 are arbi-

trary constants.

Consider a similar example for the difference case (k=

C(z)). Let L= A2–2A+l, &(j) =~O(i.e., Bisthe field

of constants). Then+= l,theequation A2y–2Ay+l = 1

produces the k-problem A2u= 1. We take d= z2/2, e1 =

l,e2 = x. It givesxl = 1,x2 = l,p = 2 and we get the
solution of equation (6)

which is equal to 1~1~1~0, i.etothe space ofallpoly-

nomials of the degree ~ 2.

The following example shows, that in some cases an ex-
isting solution of the equation (6) is not found with the help

of the considered algorithm. Let in the differential case

J
k = C(X), L = -$,~(~) = e-” O.

Obviously the equation y’ = e-” has no solution in ?i~
(the corresponding k-problem u’ – 2XU = 1 has no rational

solution). But, if we use the fact that the equation Ly = O
has the hyperexponential solution y = 1 then formula (17)

gives us the solution

of equation (6).

If one uses Algorithm 2 the finding of a solution of (6) is
guaranteed in the situation when (9) has no solution in %fk.

Consider the situation when (1) has a solution a & ~k such
that h(a) = h(~). Here L&(a) = ~(f) because obviously

s(j) C L&(a) and dim L&(a) < dim E(t). Therefore (6) has
a solution A = t(a) such that dim A = dim &(~).
Proposition 8 Let (6) have a solution A in the class of

o!‘Alembertian spaces and dim A = dim&(f), Then the equa-
tion Ly = @l has a solution in A fl ‘h!k.

Proof: Let Lpl = +1, pl E A. We have l(@I, O) C L&(pl)

and L&(ql) c 1(1/1, O) (since &(pl) C A fl {did ~ A~, Ld c

I(VI, O)}). Therefore 1(41, O) = Lt(pl). Now taking into
account that dim A > dim&(f), we have dim &(pI) = 1. ❑

If PI is the unique solution in ~k of the equation Ly = $1

then we can consider the equation LI~llY = I(@2, . . . . @,, O)
and proceed to the search for q2 and so on. But if the

equation Ly = +1 has other solutions in Hk then we can

meet difficulties in the process of constructing A of the same
dimension as &(f). Consider, for example, the equation y’ =

lnx:

//k= C(@, L=:, &(f)=l + O.

Then the equation Ly = 1 leads to the k-problem u’ = 1; if
we take pl = x then the second step will give the k-problem
WU’ + u = 1 with the solution u = 1, and we obtain the
solution x ~ ~ ~ O of the original equation in the class of
d’Alembertian spaces. But if we take pl = x + 1 then the

second step will give the k-problem (x + 1)u’ + *U = 1

which has no rational solution.
Fortunately Algorithm 2, in the situation where Ly = pl

has not unique solution in wk, reduces the equation LY =

~(j) to the equation LIXIIIX’IY = ~&( f) which pro-

duces the equation LIXII “Ixtly = & having the unique

hyperexponential solution p (see (22))1 Therefore if there
exists a d’Alembertian space A, dim A = dim&(f), such that

LA = ~(f), then finding a solution ~, dim ~ ~ dim&(f) of

(6) is guaranteed.

To construct the complete answer to the question
whether (6) has a solution in the class of d ‘Alembertian

spaces, or not, it is sufficient (due to Proposition 2) to use
the search for hyperexponential solutions of homogeneous

equations only once, when we first meet an equation Ny == +
which produces an unsolvable k-problem. This time we have

to consider the equation Ny = O, find the corresponding

AI, . . . . Am c ?l~ such that N[>l] c~rnly = O has no solution
in %k and pass from the equation Ny = $ to

~[k] ..[LJY = *

A1... Am”

This gives us a new version of the algorithm, which together

with L, B and r has the additional argument b: if it is gu,ar-
anteed that the equation Ly = O has no hyperexponential

solutions, then b = 1 else b = O.
Algorithm 3
1. If ord L = O, i.e., L is some q E k, then the result will

be ~B.

2. Let @ = head(B). Reduce the equation Ly = @ tc) a

k-problem. If the k-problem has no solution then go to 5.
3. Let O be a solution of the k-problem, and

cl, ..., el (1 ~ O) a basis of all solutions in k of the equla-

tion Mu = O, which is the homogeneous counterpart of the

k-problem. Construct xl, . . . . xl and p according to (22). If
r = 1 then the result will be 1(x1, . . . . Xl, p, 0), else aPF’lY

the algorithm recursively to

LIXI] [xI][w], ~all(B), r _ 1, b

4. If the result of the recursive call was “no so-

lution” then the final result will be the same. Oth-
erwise, if the result of the recursive call was the

d’Alembertian space 1(~1 ,..., &t,0),then the final result will
bel(Xl,. ... Xl, p,~l, ~t, O)t, O).

5. If b = 1 the algorithm stops with the result “no

solution”. If b = O then find Al,. . . . Am c ~k such th;at
LI~ll.I~mlY = 0 hm no solution in %k. Apply the algorithm

recursively to

LIA1],.,[Am] 1

‘ A1... Am
B, r, 1.

6. If the result of recursive call was “no solu-

tion” then the final result will be the same. oth-

erwise, if the result of the recursive call was the

d’Alembertian space 1(C1,. . . . ft, O), then the final result will
be.f(~l,. ... hm,’$l,..., ft, o). In

Algorithm 3 calls an algorithm for finding hyperexpo-

nential solutions only when required. Therefore in the

general case this algorithm does not give the space of all
d’Alembertian elements which have the L-image in B. But
we can construct this space if we revise the fragment “If
r = 1 then the result will be l(x1, . . . . xl, p, O)” in step 3

237



of the algorithm. If r = 1 and simultaneously b = 1 then
this fragment gives complete solution of the problem; but if
T m 1 and b n () then it is possible to construct additionally

Al, . , Am for the operator which we have at this step (as in

step 5) and return the answer I(xl, . . . . xl, p, h,. . . . Am, o).

This version of the algorithm (Algorithm 4) gives the max-

imal solution of (6).
Algorithm 4 to search for the space of all d’Alembertian

elements which have the L-image in B has the advantage

over the approach based on formula (17): the homogeneous

equation we deal with has in some cases the order less than
n = ord L (and sometimes this order is equal to O). Observe

that if this homogeneous equation has the order 1 then its
hyperexponential solution can be written directly without

using special complicated algorithms.
When the space A such that LA = S(f), dim A = s is

constructed we need to choose the elements of this space,
which are solutions of (1). It can be done by equating the

values of VZy and V1f for 1 =0, . . ..s– 1.

4 Implementation

Algorithm 2 was implemented in Maple 5.3 for an arbi-

trary Ore polynomial ring and includes several procedures.

The main procedure dAsolve2 takes an operator L and the

envelope of the right-hand side B and returns (if found) a
solution A of (6) in class of d’Alembertian spaces. Con-

sider again equation (18) and a Maple log of the session
which solves this equation in the class of d’ Alembert ian

spaces (here the program is set to the differential case, i.e.,
u=l,6=O=d/dx):

> L:=[-x, O,I] ; B:=dA((4*x-3+1) /x-(3/2) , i/x, O) ;

L:=[–z, o,l]

B := dA
(

4X3+1 10
~’;’

)

> dAsolve2(L, B) ;

(dA –4@,0
)

It takes 7 seconds 1 to find this solution, of which 5 seconds
where spent solving two k-problems. As can be seen from
this session, an Ore polynomial L is represented as a list of

coefficients and the d’Alembertian space of the form (5) is
represented as dA(~l, . . . . @r, O), where dA is an unevaluated

name.

Several auxiliary procedures are needed in order to use
this implementation in practical cases. For example, a pro-

cedure to construct S(b) for a given right-hand side b (we
use a partial algorithm that can prompt the user for input),

a procedure to choose those solutions from A which satisfy
(1) (it is done by equating the values of V“y and V’f for
S= o,... , r — 1 at a point p, which is nonsingular for the
equations considered, and then by solving a system of linear
algebraic equations) and so on.

Before using this program it needs to be set to a con-
crete k[~] by pointing out the independent variable and the
concrete J, u. Additionally it is necessary to provide the
program with the full name (including path) of a procedure

lA1l the timings reported in this paper were obtained on 66Mhz

IBM PC 4S6DX.

to solve k-problems. In the standard cases, such as differ-

ential, difference, q-difference and so on, this adjustment is
hidden from user and he needs only to select the appropri-

ate standard case. After this is done, the user can call the
procedure dAsolver which takes an operator L and a right-
hand side b and returns a d’Alembertian solution of equation

(1) if it was found. This procedure uses the auxiliary pro-

cedures mentioned above and the main solver in the class of

d’Alembertian spaces dAsolve2.

Consider an example. The equation

has the elementary particular solution –4 @ln( z ). The
procedure dsolve from Maple 5.3 gives a particular so-

lution expressed in terms of integrals and Bessel functions
and spends 48 seconds searching for that solution:

> eq: =diff (cliff (y(x) ,x) ,x) -x*y(x)=

(4*x-3+ l)*ln(x)/(x*sqrt (x)) :
> z:=dsolve(eq, y(x)) ;

Z:= y(z)=
/

1n(z)(4x3+ l)%l/(z512(

‘1 Besse11(:;x3’2)

‘Besse1K($:z3’2) “))dz@

/
%2- ln(z)%2(4x3 +l)/(z5/2(

%’BesselI($:x3’2)

(33 ) ‘2))dxfi
+ BesselK ~ ~ X3’2

%1+.elm%’+-czllz%l

‘1 ‘= B=%+3’2)
‘2:= Besse11(i:x3’2)

Below we give the log of a Maple session which uses our
program to find a particular solution of this equation:

> read’ c: \\dale\\iss’ ;

First of all it 1s required to define

- independent variable,

- automorphism s&ma,

- a map delta
What is the name of independent variable?
>V

Please, choose one of possibilities:
1. differential case
2. difference case
3. recurrent case
4. q-difference case

5. q-differential case
6. non-standard case

>1
j L:=[-v,O,I]; b:=(4*v-3+l)*ln(v)/(v*sqrt(v) );

L:=[–v,o,l]
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b:=( 4v3+l)ln(v)
~3/2

> dAsolver(L, b);

–4filn(v)

Our program spent 12 seconds to produce this answer.
In particular, 2 seconds were spent on constructing the en-

velope of the right-hand side, 7 seconds – on the search for

solution in the class of d’Alembertian spaces (of which 5

seconds were spent in order to solve two k-problems) and

3seconds –tochoose a particular solution of the equation.
To solve k-problems in differential case we use M. Bronstein’s

package ratlode from the Maple share library.

We do not use a general toolkit to handle Ore polyno-
mials such as T. Mulders’ package. Algorithms described in

this paper do not need operations ink[O] more complicated

then division by a linear polynomial or multiplication of two
polynomials. It allows us to implement our algorithms more

efficiently.

We remark that there is an advanced theory concerning
inhomogeneous linear ordinary differential equations ([10]).

But this theory does not consider, for example, diffe~ence

and q-difference equations, and is not as elementary as the

one proposed in this paper.

5 A remark about the representation of results

The final result of Algorithms 2-4 could be represented as

the pair (a, H) where a is a solution of (1) and If is a

d’Alembertian space of solutions of (9). Observe that us-
ing, for example, Algorithm 2 we get hyperexponential so-

lutions of homogeneous equations when consider different

k-problems. We have to transform all these solutions into

solutions of (9) and to construct H.

Proposition 9 Let p c %!k, Lp # O. Let v ~ Ak, LIW’IV =

O. Then there exists w ~ Ak such that V(w/~) = v, Lw = O.

Proof: We consider the operator ~ defined by (10). Then

Let

l–
z = ——Tv.

Lp
(23)

Applying V to the both sides of (23) and taking into account

that L[v]v = O, we obtain V.z = v. Substituting V.z for v
into (23) we obtain

~mz + z = o,
Lp

i.e. ~Lpz = O. Hence we can take w = yzz, that is

w= v~v
Lp ‘

❑

CoroUary 4 If we know a space Cd solutions of LIW1y = O
then we can construct the space ~TC of solutions of Ly =

o.

The last corollary can be used repeatedly.
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