
Mixed representation of polynomials oriented towards fast parallel shift *

Eugene V. Zima
Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, 119899, Russia
e-mail: zima~cs. msu. su

Abstract

In this paper we consider the form of polynomial represen-
tation useful in problems connected with performing poly-
nomial shift. We propose basic parallel algorithms suited
for SIMD architecture to perform the shift in O(1) time if
we have 0(ra2) Processor Elements available, and the shift
haa to be performed repeatedly. Proposed algorithms are
easy to generalize to multivariate polynomials shift. The
possibility of applying these algorithms to polynomials with
coefficients from non-commutative rings is discussed as well
as the bit-wise complexity of the algorithm.

1 Introduction

Solution of many problems can be expedited, when “hard-
ware shift” is involved in the computational process. Typi-
cal example for sequential computation is multiplication of
an integer by 2“. In parallel computation such an exam-
ple gives Cannon matrix multiplication algorithm [2], which
multiplies matrices in linear time using skew reprmntation
and parallel shift of matrices. In this paper we will con-
sider representation of multivariate polynomials, in which
the” shift” computer operation meets the” shift” mathemat-
ical tranaformat ion. This representation is multidimensional
analog of tables of finite differences (TFD) and is suited
for SIMD architecture. We will describe basic algorithms
to convert polynomials into TFD-based representation and
show the possibilityy of expediting computat ion of some stan-
dard problems. Throughout the paper we suppose, that we
have enough Processor Elements (PEs) for representing con-
sidered objects.

2 Univariate preliminaries

In thk section we consider a form of polynomial representa-
tion breed on tilte differences. This form is analogous to a

●Work reported herein wss supported in part by the RFBR and
INTAS under Grant 95-IN-RU-412.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial ad-
vantage, the copyright notice, the title of the publication and its
date appear, and notice is @ven that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to poet on serversor
to redistribute to lists, requires prior specific permission and/or
a fee. PASCO’97, Wailea, Maui, Hawaii; (Q1997 ACM 0-S9791-
951-3/97/0007. . .US$3.50

dense form (table of coefficients) [5] and has the same fea
tures as any other form of polynomial representation. The
primary feature of this form is its orientation towards per-
forming the fast parallel shift.

2.1 Tables of finite differences as the form of poly-
nomial representation

Consider a polynomial

f(z) =anzn+...+w+al) (1)

defined by the list of coefficients (so, al,. ... an). Thk list
gives the usual dense representation of the polynomial (all
operations on polynomials can be defined as operationa on
such lists [5]) .

Consider now the table of finite differences (TFD) of
~(z), taken at the point z = ZO with step h:

‘3=[P0, W, W2,..., %J. (2)

Here PO = ~(zo) (O-order diEerence of ~(z)), WI = ~(zo +
h) - ~(zo) (first-order difference of ~(z)), pz = f(zo +2h) -
2~(zo + h) + j(zo) (second-order difference of ~(z)), and
so on. This table contains all the information about the
initial polynomial (l). In fact it is just another form of
polynomial representation [13]. Operations on polynomials
can be formulated in terms of such tables.

Given polynomials ~(z) and g(z) defined by tables @ =
[PO,PI,..., ~n] and ~ = [#o, 41,..., ~~] respective~y, the
table for polynomial ~(z) + g(z) looks as following:

[PO *no, pl ●+1 ,.. .t%iom,pm +1,1, qn], qn]. (3)

In its turn, the table for polynomial r(z) = ~(z)g(z) is
A=[Jo, Jl, ,.. ,&+~], where fort =0, l,. ... n+rn

“‘U=:g:m,(:)’”’z:(t+ (4

Formulae (3) and (4) give an analog of the formulae for
coefficients of the sum and the product of two polynomials
in usual dense representation.

1we suppose here without loss of generality, that n ~ m,

150

2.2 Polynomial shift in TFD representation

Suppose we are provided with a table of finite differences
(2) for a given polynomial (l). It is possible to compute
subsequent values of ~(z) for z = ZO, zo + h, zo + 2h, . . .
performing only n additions on each step ([7]). In the par-
allel csse (in particular, vector or SIMD architectures), it is
possible to compute these values using only two parallel op-
erations on each step – parallel shift to the left and parallel
addition.

Let A be an array AIO], A[l], A[n] and let
LeftShift(A) denote a parallel shitl of A to the left by
one component, i.e., Lef tShif t (A) performs the following
assignments
AIO] := A[l]; . . A[n - 1] := A[n]; A[n] := O.

If components of A are set by values po, PI, P., then
the following parallel assignment

A := A + LeftShift(A) (5)

updates A by the table of finite differences of ~(z) taken at
the point z = zo + h (AIo] = f(zo + h)).

Remark 1 Obserwe, that this table of finite differences is
the same as the table of finite differences for polynomial
/(z + h), taken at the point z = ZO. Another words, in
TFD representation, the “shift” computer operation meets
the “ghifi” rnathernaticnl tmnsforrnat:on.

Performing assignment (5) one more time, we get the table
of finite differences of f(z) taken at the point z = zo + 2h
(AIO] = f(zo + 2h)) and so on.

2.3 Conversion to TFD representation

From now on we will consider TFD taken at the point zo = O
with the step h = 1 and then show, that all results hold for
the general case. We start with a simple observation:

Remark 2 Formulae (3) and (~) do not depend on the do-
main of values ~j, qk. Components of tables @ and * could
be numbers, symbols, polynomials (in the usual dense repre-
sentation). If we know how to add and multiply ~j, +k, we
know also how to add and multiply TFDs + and ~. Another
words, here the situation is the same as for polynomials in
the usual dense (list of coefficients) representation: if we
know how to add and multiply meficients, we also know
how to add and multiply polynomials.

Now, let’s derive from (4) a simple case of the TFD-
multiplication: given polynomial f(z), defined by TFD

\
@ = [We,~1,.. ., pk and polynomial x defined by TFD [0, 1],
the polynomial ~(z z will be defined by TFD

[0, (WO+W),2(W +$92), ,~(pk-l+pk), (~+l)(pk+O)].(6)

Let RightShif t (A) denote parallel shift of the array A
to the right by one component, i.e. performs the following
assignments
A[n] := A[n – 1]; A[l] := AIO]; AIO] := O.
If we have prepared in advance the special array rnltr such
that mltr[i] = i + l,i = 0,1,. . . ,n, we are able to get TFD
for @ z (by given array A of components of @) in 4 parallel
steps (two parallel shifts, one component-wise multiplication
and one component-wise addition):

A := RightShif t ((A + Lef tShif t (A))* rnltr). (7)

The last means, that for an n-degree polynomial f(z) given
by coefficients sIO],s[l], , s[n], we are able to construct

TFD in O(n) parallel steps using the Homer scheme and
(7):
Algorithm 1. Conversion of univariate polynomial to TFD
representation.
Input: array s[O..n] of coefficients of polynomial f(z)
output : array AIO.n], which is the TFD representation of
polynomial f(x)

mltr[jl :=j+l for all j=Oil, . . . ,n;
A[j]:=O for all j= 0,1,n. AIO]:=s[n];
for k:=n-1 downto O do

A:= RightShift ((A + LeftShift (A)) ● mltr) ;
AIO]:= s[k]

od ;

Consider example. Let f(z) = 622 – 122 – 5, i.e.
sIO] = –5, s[l] = –12, s[2] = 6. Before the loop, array
mltr = [1, 2, 3], array A = [6, O,O]. After the firat itera-
tion of the loop A = [– 12,6,01, and after the second step,
A = [–5, -6, 12], which is the TFD of f(z) taken at the
point O with the step 1.

2.4 Simple application example

One of the typical computational problems connected with
finding polynomial solutions of linear operator equations [1]
is: given polynomials ul (z), w(z), evaluate polynomials
‘Ui(z) at successive integer vaiue9 of z.

Denote n = max deg ~: and compose an 1 by (n + 1)
matrix U, putting coefficients of ~i (z) in the i-th row and
filling empty elements by O. Let MLTR be composed of 1
rows equal to mltr above and LeftShift and RightShift
act on all rows of matrices simultaneously (which is usual
shift-operation for SIMD machines). Then, after prelimi-
nary work of complexity O(n)

MLTR[i, jl:=j+l for all i=l,l. j=O,l, n;. ,n;
A[i, j]:=O for all i=l,l. j=O,l, n;. ,n;
A[i, O]:+J[i, n] for all 1=0,1, ...,1;
for k: =n-1 dovnto O do

A:= RightShif t ((A + Lef tShif t (A)) ● 14LTR);
A[i, O]:= U[i, k] for all i=O,l,l.

od ;

we get TFDs for all u; in the array A. The tirst column
of the matrix A contains values w(0). Now, we are able
to get successive values of all ~i at the points z = 1,2,
spending 0(1) ring operations on each step:

A := A + LeftShift (A) .

Recall, that values needed can be found in the first column
of A.

3 Basic SIMD operations

An usual dense representation of d-variate polynomial
~(zl, Zd) is d-dimensional array of coefficients. Con-
sidering basic SIMD-like operations on such arrays we will
suppose that each entry of such an array is located in sep-
arate PE and neighbors entries are located in neighbors
PEs. Given a d-dimensional array s[O..nl,. . . . O..n~] and
i C {i 1, id }, we will use the following operations as basic:

● Lef tShif ti (s) shifts an array s one component to the
left in the i direction (here “left” means towards de-
creasing i);

151

I

●

●

●

IlightShifti(s) shifts an array s one component to the
right in the i direction (here “right” means towards
increasing i);

sli=j denotea the (d – I)-dimensional sub-array of the
array s obtained by fixing the value of the index i = j,
where O ~ j ~ ni;

~(.i)l~=; denotes the d-dimensional array of the same.. . . .
shape as s, whose elements for i = j aud for any valuea
of other indexes ii,. ... id are eqUal to F(j).

Observe, that every operation like shifting, computing slisj
or e.g., (j+ 1) Ii=j, corresponds to a single parallel instruction
on a SIMD machine and takes constant time 2 (of course
under assumption that we do have enough PEs).

Additionally we consider binary parallel operations as
basic. Let s and u be d-dimensional arrays of the same
shape. Further we will use

● s + u – component-wise addition ofs and u;

● s * u - component-wkw multiplication ofs and u;

● u:= s – component-wise assignment.

As usually for SIMD computations we assume that arraya
of the same shape are mapped to the same set of PEs, i.e.
entries W[il,id] and S[~l, ad] for fixed ~1,...,~d are
located in the same PE. That is why binary operations on
these arrays take constant time.

Using operations above we can compose more complex
expressions. For example,

U:= (2~)li~=j * 5 (8)

can be rewritten for explanation sequentially as
for all i6{il,..., id}&i#i2 do

for j:= 0,1,n2 do
u[il, j,is, . . . lid] :=2’ *S[~l, ~,i3,idl

od

od

This expkmatiom contains loops, but parallel complexity of
assignment (8) is constant and consists of the following three
steps:

1. temporary parallel ~iable of the same shape as s is
assigned by values (2~) [iz=j,

2. parallel multiplication of this variable and s,

3. parallel assignment of the result to u.

Let s be as earlier a d-dimensional array, u be a (d – l)-
dimensional array, and i E {il,..., id}. A bit more complex
operations needed further are

● ReduceAddi (s), whkh returna (d- I)-dimensional array

ni

~sli=~;
j =0

. CopySpreadi (u), which returns d-dimensional array ob-
tained by creating and spreading ni +1 copies of u along
axis i.

Both these operations needs O(log ~i) parallel steps ([3, 8]).

2We aesume here and further until section 5.4, that the complexity
is counted in the number of ring operations.

4 Mixed TFD-baaed representation of multivariate
polynomials

Given d-variate polynomial t(m,..., Zd) represented by
d-dimensional array s[O..nl,..., O..nd] and bed p C
{l,..., d}. We can consider thm polynomial as an univariate
polynomial in ZP with coefficients

81ip=0,Slip=l) Slip=np,

which are representations of (d - 1)-variate polynomials.
Define arrays MLTR and A of the same dimen-

sion and shape as s. Substitute in Algorithm 1:
Sl,P=~ instead of s[k], Lef t.Shif tiP, RightShif tiP instead of
Lef tShif t, RightShif t and MLTR := (j + 1) Ii, =j instead
of mltr [j 1: =j +1. We get an algorithm to construct TFD A
in variable ZP for this unvariate polynomial. Each element
oft his TFD is a (d – I)-dimensional array, representing some
polynoddi n~l,. ..)~l,~p+ 1,1, ~d. ,~d.

Denote by Zf a subset of the set of indexes {1,..., d}.
A mixed representation of f connected with Ii is such an
array A, that

for each p E Ii

AliP~O,AliP=lJ . . . ,AliP=nP,

is a TFD for f viewed as an univariate polynomial in
Xp;

for each p # lf

AliP=o$ Alip=l ,..., AliP=~P ,

is a list of coeflkients for f viewed as an univariate
polynomial in XP.

Given an array s as above and If. Algorithm to construct
mixed representation connected with If looks as following.
Algorithm 2. Conversion of multivariate polynomial to
mixed TDF-based representation.
Input: array s[O..nl, ..., O..n~] of coefficients of polynomial
f(zl,.., , ~d) and Jf
output : array AIO..nl,. ... O..nd], which is the mixed TFD-
based representation of polynomial f(z)

for each p E Ii do
MLTR := (j+ l)li~=j;
A[il,..., id] := () for all ii,..., id;
Alip=t) := Slipsrbp;
for k := ~ – 1 dounto O do

A:= RightShiftiP ((A+ LeftShiftiP (A)) * MLTR);

A]ip=o := ~li,=k
od ;
5:=A

od

If If= {I,..., d} then this algorithm constructs “pure”
TFD representation, and it ~ take nl + n2 + . . . + nd
parallel steps to get it. We will show the use of a mixed
representation in the following section. Now we define two
parallel operations on polynomials in mixed representation.

Given two polynomials of the same dimension f and g
represented in mixed form by arrays u and u of the same
shape. Let If =19 and p E {1,... ,d}. Then

1. the representation of f + g can be got by component-
wiae parallel addition of arrays u and u, and If+g =
If = 19;

152

2. the representation off. XP is an array obtained by the
operation
RightShiftiP ((u+ LeftShlftip(u))* (j+l)li,=j), if

p G If, or
RightShif t;, (u), if p $! ~j.

s Fast parallel computation of the polynomial shift

Given a polynomial (1) with coefficients from an arbitrary
ring, the shift off (z) by a constant c is the operation which
computes coefficients bo, bl, . . ., b~ of the polynomial

g(z) =f(z+c) =bnx’’+. ..-tlux +bo.

This operation is used in many applications such as, for ex-
ample, polynomial root isolation ([4]), changing polynomial
basis, etc. The straightforward formula desired for compu-
tation of coefficients is

n

bj=~ak
()

k C&–J, j= 0,1,n.

k=j J
(9)

The complexity of the shift (the number of ring operations
performing the shift) computed sequentially by this formula
is 0(n3). Known methods (such as the Homer scheme or
“synthetic division” [9]) reduce the complexity to O(nz).
An advanced sequential algorithm from [10] performs this
operation in O(n log n) steps via FFT polynomial multipli-
cation. Parallelization of the Homer scheme [9] gives O(n)
complexity of the procedure.

We consider c = 1 in this section and concentrate on
the case in which the shift by a given constant c hss to be
performed several times (repeatedly). We propose a parallel
algorithm suited for SIMD architectures to perform the shift
in 0(1) time. To achieve this speed of the algorithm, 0(n2)
Processor Elements (PI%) have to be available. The algo-
rithm is based on converting a given polynomial to a mixed
form of representation. The complexity of the conversion is
O(n).

5.1 Outline of an approach to fast paraUel shift

Given polynomial (1) defined by the list of coefficients, we
are interested in values of coefficients for polynomials f (z +
1), f(z + 2) and so on. The main idea is to construct mixed
represent ation for f (z + y): TFD-baaed in y and usual in
x. Conversion to the mixed representation consists of two
steps:

1. Substitute x+ y for z in (1) and collect coefficients near
every degree of z. We will get a polynomial in z whose
coefficients are polynomials in y:

f(z + v) = un(y)zn + . ~ . + Ul(y)z + Uo(v). (10)

Obviously, uj(0) =aj, j =0,1,n.
‘Uj(l), ~ = O,1,. . .,n are coefficients of j(z+ 1),
Uj (2), j = O,1,. ... n are coefficients of f (x +2)
and so on.

2. Construct the table of finite differences for each ~j (y)
at the point Oand compose the matrix with these tables
as rows (the first column of this matrix is nothing more
than list of coefficients aj).

After such preparation we are able to perform all assign-
ments (5) simultaneously for every row of the matrix. This
means, that the list of coefficients of j(z + 1) can be ob-
tained in two parallel operations (parallel left shifi of the
matrix and parallel addition). The same steps can be used
to get coefficients of ~(z +2) and so far.

Consider the following example. Let f(z) = 223-622-
52 + 1. After first step of conversion (substitution and col-
lecting coefficients) we et the polynomial 223+ (6v -6)22 +

t,(6g2 – 12v – 5)2 + 2y – 6y – 5~ + 1. After constructing
tables of finite differences we have

M(y) = 2y3 – 6y2 – 5~ + 1 = [1, –9,0, 12]
?ll(y) = 6y2 - 12y -5 ~ ~=j, ~6, 12]
U2(y) =6y–6
U3(y) = 2 = [2] ‘

Using the fact that for any TFD [qo, ~1, v.] =
[PO,VI, , p~, 0], we compose the matrix

Now we need
Lef tShif t (U):

‘=(HVVI
to perform one parallel operation to get

/-9 o 12 o\

and one more parallel operation (addition of the last two
matrices) to et whole result of the assignment U := U +

7LeftShift(U After this assignment

/ -8 -9 12 12\

(6120

)

u= –;* c o 0 .

2000

The first column of U contains coefficients of the polynomial
\(z+l) = 223- llz -8.

Repeating these two steps again we get

(
–9 12 12 0

12 0 0LeftShift(U) = ~ o ~ o
)

\oooo)

and after performing U := U + LeftShift(U)

The first column of U now contains coefficients of the poly-
nomial ~(z + 2) = 223 + 622 – 52-17.

Clearly, with this representation we are able to perform
the parallel shift of the given polynomial in 0(1) (precisely
two) parallel steps.

5.2 Conversion of f(z) to the mixed form

After substitution x = z + y into given polynomial (1) we
can rewrite it in Homer-like manner:

((... (%(~+v)+ %l)(~+v) +))(z+v)z+v) +~l)(z+v)+m,

153

I

and exploit operations 1,2,
These rnves the followbm

defined at the end of Section 4.

Algorfihm 3: Convers& to mixed representation.
Input: list a[o], a[l], . . . , a [n] of coefficients of polynomial
f(z)
output : twxlimenaional array UIO..?L,O..n] - TFD-based
mixed representation of polynomial f(z)
Complexity: O(n)

MLTR[i, j] :=j+l for all i=O,. ..,n, j=O, n;. ,n;
U[i, j] :=0 for all i= 0,1, . ..n. j=O,l,n.
U[o, o] := a[n];
for k:=n-1 doimto O do

w := RightShifti(i7);
U := RightShif tj ((U + Lef tShif tj (U)) * MLTR) + W;
UIO, O] := a[k]

od ;
It is easy to see that this algorithm is the concretization of
Algorithm 2.

5.3 Performing the shift

After all preliminary work it’s now rather easy to formulate
the following
Algorithm 4: Polynomial shift in the mixed TFD-based
representation.
Input: two-dimensional array UIO..n, O..n] - the TFD-
baaed mixed representation of polynomial f(z)
output : the same array, which is the TFD-based represen-
tation of polynomial f (z + 1)
Complexity: O(1)

U:= U + LeftShif tj (U)

Recall, the coefficients off (z+ 1) can be found in the first
column of U after performing this operation.

5.4 Polynomial shift in the root isolation context

The polynomial shift in the root isolation context uses, w
the rule, an arbitrary prectilon arithmetic. That is why
the blt-wise complexity of thk operation is important. Let
~ = max Iai I in (1) and L(u) stands for the bit-length of
an integer u (L(nrn) ~ L(n) + L(m), L(nm) 2s’ naL(n)).
The parallel algorithm to perform polynomial shift ([9]) uses
O(n) ring operations. The bit-wise cost of one ring operation
is O (nL(z)). Therefore the bit-wise complexity of the shift
is

0(n2L(z)). (11)

When we convert (1) into TDF (2) the size of integers in-
volved grows essentially. The reasonable question here, how
does this fact affect the bit-wise complexity of TDF-baaed
polynomial shift. Let Z = max l~il in (2). It can be easily
derived from Algorithm 1 that Z = o(zn”), zn! = o(Z) (see
also [6]) . The bit-wise complexity of the addition Pi+ ~i+l
is bounded by L(Z) = L(z)+ n log n. The same holds for the
bit-wise complexity of the Lef tShif t instruction. Therefore
the bit-wise complexity of TDF-baaed polynomial shift is
bounded by 2L(Z) = O(L(Z) + n log n), whkh is still better
then (11).

Real root isolation algorithms ([4, 9]) use (together with
shift) another transformations of polynomials:

● Hl,z, : f(m)+ f(z/2k), and

● R : f(z) + zY’f(l/z).

For mixed representation considered above the first trans-
formation does not give a troubles, because it can be imple-
mented by the operation

U*(~) l;=k.

However the second transformation (which reverse the list
of coefficients of f) makes prepared in advance mixed rep-
resentation U useless.

We would like to avoid reconstruction of U from afresh af-
ter every reversion. For thu purposes we split data involved
in the problem and consider the following representation of
needed objects:

●

●

●

3-dimensional array UIO..n, O..n, O..n] with entries
U[k, i, j] such that 2-dimenaionid array Ulk=m k mixed
representation of (s+ y)’” for m = O,1, ..., n. Observe
that for given f(z) this array can be constructed by a
bit modified Algorithm 3 in O(n) parallel steps.

2-dimensional array AIO..n, O..n] with entries A[k, i]
sucl’that Alk=~ = am for m = O,1, n.

l-dimensional array a[O..n] of coeilicients of f (z).

Transformations needed for root isolation can be deiined by
the following parallel operations:

1.

2.

3.

E : f(z) + f(z + 1):
a) U := U + LeftShifti(U),
b) A := Ulj=o * A,
c) a := IleduceAddk (A).

HI,2, (f(z)):

A := A * (1/2k)li=k,

which involves 2-dimensional arrays, or alternatively

U := U * (1/2k)li=/c,

which involves 3-dimensional arrays.

R(f(z)):
Reverse(a) and A := CopySpreadk (a).

Let’s proceed with brief bit-wise complexity analysis of de-
scribed transformations. The bit-length of entries of U
is bounded by n log n and cost of the assignment la) is
O(n log n). But values of ~lj=o are not so large as n log n.
It was shown in [9] that coefficients of f (z + 1) are bounded
by 2“2 and the bit-length of coefficients of f (z + 1) is
bounded by L(z) + n. Thus the cost of multiplication in
lb) is bounded by L(z)n, and coat of the assignment in
1.c) is bounded by log n(n + L(z)). The coat of operation
in 2 is at most O(n). Finally the cost of CopySpreadk (a)
(which should be performed after shifting) is bounded by
log n(n + L(z)). Therefore all the operations involved are a
bit faster then (11).

In order to avoid reversions of the array a it makes sense
to consider together with U an array V of the same di-
mension and shape, such that V[k, i, j] = U[n – k, i, j], k =
0,1,..., n. In this case every time when U is shifted, V has
to be shifted as well, and we can alterate multiplication of
A by U[jzo ~d Vljzo.

154

6 Generalizations

Remark 3 The fast pamllel polynomial shift by 1 is based
on formula (6). All the reasoning for the shift by a constant
c stay the same. The only difference is that the polynomial
x has in this case the TFD representation [0, c] instead of
[0, 1]. Therefore, (6) should be rewritten as

[~o,~l,.,~k]”[o,c]=
[O,c(yxl + p,),2c(pl + p,),,. . . ,(k+ I)c(lpk +0)],
which changes only one preliminary assignment in Algo-
rithm 9:
f4LlTt[i, j]:=c*(j+l) for all i,j=O,n.
Algorithm~ remains the same as earlier.

Given d-variate polynomial F(zI,. . . . z~), defined by the
d-dimensional array of coefficients, and a list of constants
cl,cd. theshiftof~(zl ,.. .,rd)by cl, cdisthes the oPer-
ation which computes the d-dimensional array of coefficients
of the polynomial

~(~l+cl,...,~d+cd).

Combination of Algorithms 2 and 3 with IF = {1, d} al-
lows us to get the multivariate TFD-based representation of
F. If n = m~: (deg z,) in F, then the complexity of such
a conversion is O(dn) of parallel ring operations. When the
TFD-based representation of F is constructed, the polyno-
mial shift can be computed by consequent computation of
Univariate shifts dOng ZI, z2,2h’ 3. Therefore, the com-
plexity of the multivariate shift in a multivariate TFD-based
representation is O(d).

Neither Algorithm 1 nor Algorithms 2, 3, 4 assume com-
mutativity of the multiplication in the domain of polyno-
mial coefficients, It means, that above approach can be
applied, for example, to polynomials of the form (1), where
coefficients aj are square matrices of the same size. All
the reasoning remain the same. However, assignments such
as U[0,01 : = a [j] will be assignments of matrices in this
case. The complexity of algorithms remains the same, if it
is counted in terms of the number of matrix operations.

7 Conclusion

In this paper we considered a special form of polynomial
representation oriented towards fast parallel computation
of polynomial shifts. This form is the specialization of a
more general approach [11, 12, 14] of symbolic conversion of
numerical computational schemes to chains of recurrences,
which can be evaluated in “shift-and-operate” style. The
specialization enables parallel computation on the preparw
tion stage (reducing the time of conversion). It is interesting
to observe here, that the conversion to the TFD represen-
tation and parallel polynomial shift itself use very similar
parallel tools: parallel shifts and parallel additions (multi-
plications).

Of course we are able to perform the polynomial shift
fast, because we pay memory (PEs). In order to perform
algorithms 3, 4 with the speed announced, we need (n+ 1)2
PEs for proceeding n-degree polynomials. At the same time
straightforward approach [9] allows to do the same work

in O(n) time on n + 1 PEs. In d-variate case the situa-
tion is even harder: for F(ZI, . , ., Zd) which occupies an
array of the size O((n + I)d) we need O(((n + l)d)2) PEs
to perform shift in O(d) time. However, all this is usual
situation in programming theory and practice. The possi-
bility to choose competitive algorithm looks quite attrac-
tive. Especially if we take into account, that the complexity
of performing parallel polynomial shift in the mixed TFD
representation, counted in the number of ring operations (2
parallel operations), seems to be unimprovable.

Acknowledgment

I would like to thank Thierry Gautier (ETH, Zurich) who
provided me with useful comments on earlier draft.

References

[1]

[2]

II
3
4

(5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

S. Abrarnov, M. Bronstein, M. Petko~k. On polynomial
solutions of linear openator equations. In ISSA C’95, pages
290-296, Montreal, Canada, July 1995. ACM Preaa.
S.G. Akl. The Design and Anal~sis of Pamllel Algorithms.
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.
C* users guide. Thinking Machine Co., 1992.
G. Collins, J. Johnson, W. Kiichlin. Parallel real root isolw
tion using sign variation method. In R.Zippel, editor, Com-
puter Algebm and Pamllelism, pagee 71–78. Springer Verlag,
LNCS 584, 1992.
J. Davenport, Y. Siret, E. Toumier. Calcuf /ormei. Maseon,
1987.
R. Graham, D. Knuth, O. Patmhnik. Concrete Mathemat-
ics. Addison-Wesley, 1993.
D. Knuth. The art of computer progmmming. Vol. 2.
Addison-Wesley, 1969.
W. Koch. Efficient Reduce and Scan Functions for Mesh-
Connected SIMD Computers. In PA RCELL,4 ’96, pagea
174-183, Berlin, Germany, 1996. Akademie Verlag.
W. Krandick. Isolierung reeller nullstellen von polynomen.
In J.Herzberger, editor, Wis.senschafttiches Rechnen, pages
105-154. Akademie Verlag, Berlin, 1995.
A. Schtinhage, A.F.W. Grotefeld & E. Vetter. Fast Algo-
rithms – A multitape Turing machine implementation. BI
Wissenschaftsverlag, Mannhaim, 1994.
E. Zima. Automatic construction of system of recurrence re-
lations. USSR Comput. Maths. Math. Ph~s., vol. 24(6):193-
197, 1984.
E. Zima. Recurrent relations technique to vectorize func-
tion evrduation in loops. In PARCELLA ’94, pagea 161-168,
Potedarn, Germany, 1994. Akademie Verlag.
E. Zima. Simplification and optimization transformations of
chains of recurrences. In ISSA C ’95, pages 42–50, Montreal,
Canada, July 1995. ACM Press.
E. Zima, T. Csaavant, K. Vadivelu. Mapping techniques
for parallel evaluation of chains of recurrences. In IPPS ’96,
pages 620-624, 1996.

‘It is interesting to observe here, that the result of all computa-
tions does not depend of the order of univariate shifts; it will be the
same, as e.g. for consequent shifts along Zd, zd_ 1, . . . z, The only
important thing here is to proceed shift along every z;.

155

I

