
Chapter 10

File I/O

Copyright © 2016 Pearson Inc. All
rights reserved.

Streams

• A stream is an object that enables the flow of
data between a program and some I/O device
or file

– If the data flows into a program, then the stream
is called an input stream

– If the data flows out of a program, then the
stream is called an output stream

10-2 Copyright © 2016 Pearson Inc. All rights reserved.

Streams

• Input streams can flow from the keyboard or from a
file
– System.in is an input stream that connects to the

keyboard
 Scanner keyboard = new Scanner(System.in);

• Output streams can flow to a screen or to a file
– System.out is an output stream that connects to the

screen
System.out.println("Output stream");

10-3 Copyright © 2016 Pearson Inc. All rights reserved.

Text Files and Binary Files

• Files that are designed to be read by human beings,
and that can be read or written with an editor are
called text files

– Text files can also be called ASCII files because the data
they contain uses an ASCII encoding scheme

– An advantage of text files is that the are usually the same
on all computers, so that they can move from one
computer to another

10-4 Copyright © 2016 Pearson Inc. All rights reserved.

Text Files and Binary Files

• Files that are designed to be read by programs and
that consist of a sequence of binary digits are called
binary files
– Binary files are designed to be read on the same type of

computer and with the same programming language as
the computer that created the file

– An advantage of binary files is that they are more efficient
to process than text files

– Unlike most binary files, Java binary files have the
advantage of being platform independent also

10-5 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• The class PrintWriter is a stream class
that can be used to write to a text file

– An object of the class PrintWriter has the
methods print and println

– These are similar to the System.out methods
of the same names, but are used for text file
output, not screen output

10-6 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• All the file I/O classes that follow are in the package
java.io, so a program that uses PrintWriter will start
with a set of import statements:
import java.io.PrintWriter;

import java.io.FileOutputStream;

import java.io.FileNotFoundException;

• The class PrintWriter has no constructor that takes a file
name as its argument
– It uses another class, FileOutputStream, to convert a file name

to an object that can be used as the argument to its (the
PrintWriter) constructor

10-7 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• A stream of the class PrintWriter is created and
connected to a text file for writing as follows:

PrintWriter outputStreamName;

outputStreamName = new PrintWriter(new

 FileOutputStream(FileName));

– The class FileOutputStream takes a string representing the file
name as its argument

– The class PrintWriter takes the anonymous
FileOutputStream object as its argument

10-8 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• This produces an object of the class PrintWriter
that is connected to the file FileName
– The process of connecting a stream to a file is called

opening the file
– If the file already exists, then doing this causes the old

contents to be lost
– If the file does not exist, then a new, empty file named
FileName is created

• After doing this, the methods print and println
can be used to write to the file

10-9 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• When a text file is opened in this way, a
FileNotFoundException can be thrown
– In this context it actually means that the file could not be created
– This type of exception can also be thrown when a program

attempts to open a file for reading and there is no such file

• It is therefore necessary to enclose this code in exception
handling blocks
– The file should be opened inside a try block
– A catch block should catch and handle the possible exception
– The variable that refers to the PrintWriter object should be

declared outside the block (and initialized to null) so that it is
not local to the block

10-10 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• When a program is finished writing to a file, it should
always close the stream connected to that file
outputStreamName.close();

– This allows the system to release any resources used to
connect the stream to the file

– If the program does not close the file before the program
ends, Java will close it automatically, but it is safest to close
it explicitly

10-11 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• Output streams connected to files are usually
buffered
– Rather than physically writing to the file as soon as

possible, the data is saved in a temporary location (buffer)

– When enough data accumulates, or when the method
flush is invoked, the buffered data is written to the file
all at once

– This is more efficient, since physical writes to a file can be
slow

10-12 Copyright © 2016 Pearson Inc. All rights reserved.

Writing to a Text File

• The method close invokes the method flush,
thus insuring that all the data is written to the file
– If a program relies on Java to close the file, and the

program terminates abnormally, then any output that was
buffered may not get written to the file

– Also, if a program writes to a file and later reopens it to
read from the same file, it will have to be closed first
anyway

– The sooner a file is closed after writing to it, the less likely
it is that there will be a problem

10-13 Copyright © 2016 Pearson Inc. All rights reserved.

File Names

• The rules for how file names should be formed
depend on a given operating system, not Java
– When a file name is given to a java constructor for

a stream, it is just a string, not a Java identifier
(e.g., "fileName.txt")

– Any suffix used, such as .txt has no special
meaning to a Java program

10-14 Copyright © 2016 Pearson Inc. All rights reserved.

A File Has Two Names

• Every input file and every output file used by a
program has two names:

1. The real file name used by the operating system
2. The name of the stream that is connected to the file

• The actual file name is used to connect to the
stream

• The stream name serves as a temporary name for
the file, and is the name that is primarily used
within the program

10-15 Copyright © 2016 Pearson Inc. All rights reserved.

IOException

• When performing file I/O there are many situations in which
an exception, such as FileNotFoundException, may be
thrown

• Many of these exception classes are subclasses of the class
IOException

– The class IOException is the root class for a variety of exception
classes having to do with input and/or output

• These exception classes are all checked exceptions
– Therefore, they must be caught or declared in a throws clause

10-16 Copyright © 2016 Pearson Inc. All rights reserved.

Unchecked Exceptions

• In contrast, the exception classes
NoSuchElementException,
InputMismatchException, and
IllegalStateException are all
unchecked exceptions

– Unchecked exceptions are not required to be
caught or declared in a throws clause

10-17 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: a try Block is a Block

• Since opening a file can result in an exception, it should be
placed inside a try block

• If the variable for a PrintWriter object needs to be used
outside that block, then the variable must be declared outside
the block
– Otherwise it would be local to the block, and could not be used

elsewhere

– If it were declared in the block and referenced elsewhere, the
compiler will generate a message indicating that it is an undefined
identifier

10-18 Copyright © 2016 Pearson Inc. All rights reserved.

Appending to a Text File

• To create a PrintWriter object and connect
it to a text file for appending, a second
argument, set to true, must be used in the
constructor for the FileOutputStream
object

outputStreamName = new PrintWriter(new
FileOutputStream(FileName, true));

– After this statement, the methods print, println
and/or printf can be used to write to the file

– The new text will be written after the old text in the
file

10-19 Copyright © 2016 Pearson Inc. All rights reserved.

toString Helps with Text File Output

• If a class has a suitable toString() method, and
anObject is an object of that class, then
anObject can be used as an argument to
System.out.println, and it will produce
sensible output

• The same thing applies to the methods print and
println of the class PrintWriter

outputStreamName.println(anObject);

10-20 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class PrintWriter
(Part 1 of 3)

10-21 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class PrintWriter
(Part 2 of 3)

10-22 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class PrintWriter
(Part 3 of 3)

10-23 Copyright © 2016 Pearson Inc. All rights reserved.

Reading From a Text File Using Scanner

• The class Scanner can be used for reading from the
keyboard as well as reading from a text file
– Simply replace the argument System.in (to the Scanner

constructor) with a suitable stream that is connected to the text file

Scanner StreamObject =

 new Scanner(new FileInputStream(FileName));

• Methods of the Scanner class for reading input behave the
same whether reading from the keyboard or reading from a
text file
– For example, the nextInt and nextLine methods

10-24 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using Scanner
(Part 1 of 4)

10-25 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using Scanner
(Part 2 of 4)

10-26 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using Scanner
(Part 3 of 4)

10-27 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using Scanner
(Part 4 of 4)

10-28 Copyright © 2016 Pearson Inc. All rights reserved.

Testing for the End of a Text File with Scanner

• A program that tries to read beyond the end of a
file using methods of the Scanner class will
cause an exception to be thrown

• However, instead of having to rely on an
exception to signal the end of a file, the
Scanner class provides methods such as
hasNextInt and hasNextLine
– These methods can also be used to check that the

next token to be input is a suitable element of the
appropriate type

10-29 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Text File with
hasNextLine (Part 1 of 4)

10-30 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Text File with
hasNextLine (Part 2 of 4)

10-31 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Text File with
hasNextLine (Part 3 of 4)

10-32 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Text File with
hasNextLine (Part 4 of 4)

10-33 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Text File with
hasNextInt (Part 1 of 2)

10-34 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Text File with
hasNextInt (Part 2 of 2)

10-35 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 1 of 11)

10-36 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 2 of 11)

10-37 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 3 of 11)

10-38 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 4 of 11)

10-39 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 5 of 11)

10-40 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 6 of 11)

10-41 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 7 of 11)

10-42 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 8 of 11)

10-43 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 9 of 11)

10-44 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 10 of 11)

10-45 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 11 of 11)

10-46 Copyright © 2016 Pearson Inc. All rights reserved.

Reading From a Text File Using
BufferedReader

• The class BufferedReader is a stream class that can be
used to read from a text file
– An object of the class BufferedReader has the methods read and
readLine

• A program using BufferedReader, like one using
PrintWriter, will start with a set of import statements:
import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

10-47 Copyright © 2016 Pearson Inc. All rights reserved.

Reading From a Text File Using BufferedReader

• Like the classes PrintWriter and Scanner,
BufferedReader has no constructor that takes a file
name as its argument
– It needs to use another class, FileReader, to convert the file

name to an object that can be used as an argument to its (the
BufferedReader) constructor

• A stream of the class BufferedReader is created and
connected to a text file as follows:
BufferedReader readerObject;

readerObject = new BufferedReader(new

 FileReader(FileName));

– This opens the file for reading

10-48 Copyright © 2016 Pearson Inc. All rights reserved.

Reading From a Text File

• After these statements, the methods read and
readLIne can be used to read from the file
– The readLine method is the same method used to read

from the keyboard, but in this case it would read from a
file

– The read method reads a single character, and returns a
value (of type int) that corresponds to the character read

– Since the read method does not return the character itself,
a type cast must be used:
char next = (char)(readerObject.read());

10-49 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using
BufferedReader (Part 1 of 3)

10-50 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using
BufferedReader (Part 2 of 3)

10-51 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Input from a Text File Using
BufferedReader (Part 3 of 3)

10-52 Copyright © 2016 Pearson Inc. All rights reserved.

Reading From a Text File

• A program using a BufferedReader object in
this way may throw two kinds of exceptions

– An attempt to open the file may throw a
FileNotFoundException (which in this case
has the expected meaning)

– An invocation of readLine may throw an
IOException

– Both of these exceptions should be handled

10-53 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class BufferedReader
(Part 1 of 2)

10-54 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class BufferedReader
(Part 2 of 2)

10-55 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Numbers

• Unlike the Scanner class, the class
BufferedReader has no methods to read a number
from a text file
– Instead, a number must be read in as a string, and then

converted to a value of the appropriate numeric type using one
of the wrapper classes

– To read in a single number on a line by itself, first use the
method readLine, and then use Integer.parseInt,
Double.parseDouble, etc. to convert the string into a
number

– If there are multiple numbers on a line, StringTokenizer
can be used to decompose the string into tokens, and then the
tokens can be converted as described above

10-56 Copyright © 2016 Pearson Inc. All rights reserved.

Testing for the End of a Text File

• The method readLine of the class
BufferedReader returns null when it tries to
read beyond the end of a text file
– A program can test for the end of the file by testing for the

value null when using readLine

• The method read of the class BufferedReader
returns -1 when it tries to read beyond the end of a
text file
– A program can test for the end of the file by testing for the

value -1 when using read

10-57 Copyright © 2016 Pearson Inc. All rights reserved.

Path Names

• When a file name is used as an argument to a
constructor for opening a file, it is assumed
that the file is in the same directory or folder
as the one in which the program is run

• If it is not in the same directory, the full or
relative path name must be given

10-58 Copyright © 2016 Pearson Inc. All rights reserved.

Path Names

• A path name not only gives the name of the
file, but also the directory or folder in which
the file exists

• A full path name gives a complete path name,
starting from the root directory

• A relative path name gives the path to the file,
starting with the directory in which the
program is located

10-59 Copyright © 2016 Pearson Inc. All rights reserved.

Path Names

• The way path names are specified depends on the
operating system

– A typical UNIX path name that could be used as a file
name argument is
"/user/sallyz/data/data.txt"

– A BufferedReader input stream connected to this
file is created as follows:
BufferedReader inputStream =

 new BufferedReader(new

 FileReader("/user/sallyz/data/data.txt"));

10-60 Copyright © 2016 Pearson Inc. All rights reserved.

Path Names

• The Windows operating system specifies path names in a
different way
– A typical Windows path name is the following:

C:\dataFiles\goodData\data.txt

– A BufferedReader input stream connected to this file is
created as follows:

BufferedReader inputStream = new

 BufferedReader(new FileReader

 ("C:\\dataFiles\\goodData\\data.txt"));

– Note that in Windows \\ must be used in place of \, since a
single backslash denotes an the beginning of an escape sequence

10-61 Copyright © 2016 Pearson Inc. All rights reserved.

Path Names

• A double backslash (\\) must be used for a Windows
path name enclosed in a quoted string
– This problem does not occur with path names read in from

the keyboard

• Problems with escape characters can be avoided
altogether by always using UNIX conventions when
writing a path name
– A Java program will accept a path name written in either

Windows or Unix format regardless of the operating
system on which it is run

10-62 Copyright © 2016 Pearson Inc. All rights reserved.

Nested Constructor Invocations

• Each of the Java I/O library classes serves only
one function, or a small number of functions
– Normally two or more class constructors are

combined to obtain full functionality

• Therefore, expressions with two constructors
are common when dealing with Java I/O
classes

10-63 Copyright © 2016 Pearson Inc. All rights reserved.

Nested Constructor Invocations

new BufferedReader(new FileReader("stuff.txt"))

• Above, the anonymous FileReader object establishes a
connection with the stuff.txt file

– However, it provides only very primitive methods for input

• The constructor for BufferedReader takes this
FileReader object and adds a richer collection of input
methods
– This transforms the inner object into an instance variable of the outer

object

10-64 Copyright © 2016 Pearson Inc. All rights reserved.

System.in, System.out, and
System.err

• The standard streams System.in, System.out, and
System.err are automatically available to every Java
program
– System.out is used for normal screen output
– System.err is used to output error messages to the screen

• The System class provides three methods (setIn, setOut,
and setErr) for redirecting these standard streams:

public static void setIn(InputStream inStream)

public static void setOut(PrintStream outStream)

public static void setErr(PrintStream outStream)

10-65 Copyright © 2016 Pearson Inc. All rights reserved.

System.in, System.out, and
System.err

• Using these methods, any of the three standard
streams can be redirected
– For example, instead of appearing on the screen, error

messages could be redirected to a file

• In order to redirect a standard stream, a new stream
object is created
– Like other streams created in a program, a stream object

used for redirection must be closed after I/O is finished
– Note, standard streams do not need to be closed

10-66 Copyright © 2016 Pearson Inc. All rights reserved.

System.in, System.out, and
System.err

• Redirecting System.err:

public void getInput()

{

 . . .

 PrintStream errStream = null;

 try

 {

 errStream = new PrintStream(new

 FileOuptputStream("errMessages.txt"));

 System.setErr(errStream);

 . . . //Set up input stream and read

 }

10-67 Copyright © 2016 Pearson Inc. All rights reserved.

System.in, System.out, and
System.err

 catch(FileNotFoundException e)

 {

 System.err.println("Input file not found");

 }

 finally

 {

 . . .

 errStream.close();

 }

}

10-68 Copyright © 2016 Pearson Inc. All rights reserved.

The File Class

• The File class is like a wrapper class for file names

– The constructor for the class File takes a name, (known
as the abstract name) as a string argument, and produces
an object that represents the file with that name

– The File object and methods of the class File can be
used to determine information about the file and its
properties

10-69 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class File
(Part 1 of 5)

10-70 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class File
(Part 2 of 5)

10-71 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class File
(Part 3 of 5)

10-72 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class File
(Part 4 of 5)

10-73 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class File
(Part 5 of 5)

10-74 Copyright © 2016 Pearson Inc. All rights reserved.

Binary Files

• Binary files store data in the same format used by
computer memory to store the values of variables
– No conversion needs to be performed when a value is

stored or retrieved from a binary file

• Java binary files, unlike other binary language files,
are portable
– A binary file created by a Java program can be moved from

one computer to another
– These files can then be read by a Java program, but only by

a Java program

10-75 Copyright © 2016 Pearson Inc. All rights reserved.

Writing Simple Data to a Binary File

• The class ObjectOutputStream is a stream class that can
be used to write to a binary file
– An object of this class has methods to write strings, values of

primitive types, and objects to a binary file

• A program using ObjectOutputStream needs to import
several classes from package java.io:
import java.io.ObjectOutputStream;

import java.io.FileOutStream;

import java.io.IOException;

10-76 Copyright © 2016 Pearson Inc. All rights reserved.

Opening a Binary File for Output

• An ObjectOutputStream object is created and
connected to a binary file as follows:

ObjectOutputStream outputStreamName = new

 ObjectOutputStream(new

 FileOutputStream(FileName));

– The constructor for FileOutputStream may throw a
FileNotFoundException

– The constructor for ObjectOutputStream may throw
an IOException

– Each of these must be handled

10-77 Copyright © 2016 Pearson Inc. All rights reserved.

Opening a Binary File for Output

• After opening the file, ObjectOutputStream methods
can be used to write to the file
– Methods used to output primitive values include writeInt,
writeDouble, writeChar, and writeBoolean

• UTF is an encoding scheme used to encode Unicode
characters that favors the ASCII character set
– The method writeUTF can be used to output values of type
String

• The stream should always be closed after writing

10-78 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class
ObjectOutputStream (Part 1 of 5)

10-79 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class
ObjectOutputStream (Part 2 of 5)

10-80 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class
ObjectOutputStream (Part 3 of 5)

10-81 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class
ObjectOutputStream (Part 4 of 5)

10-82 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class
ObjectOutputStream (Part 5 of 5)

10-83 Copyright © 2016 Pearson Inc. All rights reserved.

Reading Simple Data from a Binary File

• The class ObjectInputStream is a stream class that can
be used to read from a binary file
– An object of this class has methods to read strings, values of primitive

types, and objects from a binary file

• A program using ObjectInputStream needs to import
several classes from package java.io:
import java.io.ObjectInputStream;

import java.io.FileInputStream;

import java.io.IOException;

10-84 Copyright © 2016 Pearson Inc. All rights reserved.

Opening a Binary File for Reading

• An ObjectInputStream object is created and
connected to a binary file as follows:

ObjectInputStream inStreamName = new

 ObjectInputStream(new

 FileInputStream(FileName));

– The constructor for FileInputStream may throw a
FileNotFoundException

– The constructor for ObjectInputStream may throw
an IOException

– Each of these must be handled

10-85 Copyright © 2016 Pearson Inc. All rights reserved.

Opening a Binary File for Reading

• After opening the file, ObjectInputStream methods can
be used to read to the file
– Methods used to input primitive values include readInt,
readDouble, readChar, and readBoolean

– The method readUTF is used to input values of type String

• If the file contains multiple types, each item type must be
read in exactly the same order it was written to the file

• The stream should be closed after reading

10-86 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class ObjectInputStream
(Part 1 of 5)

10-87 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class ObjectInputStream
(Part 2 of 5)

10-88 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class ObjectInputStream
(Part 3 of 5)

10-89 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class ObjectInputStream
(Part 4 of 5)

10-90 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods in the Class ObjectInputStream
(Part 5 of 5)

10-91 Copyright © 2016 Pearson Inc. All rights reserved.

Checking for the End of a Binary File the Correct
Way

• All of the ObjectInputStream methods that
read from a binary file throw an EOFException
when trying to read beyond the end of a file
– This can be used to end a loop that reads all the data in a

file

• Note that different file-reading methods check for
the end of a file in different ways
– Testing for the end of a file in the wrong way can cause a

program to go into an infinite loop or terminate
abnormally

10-92 Copyright © 2016 Pearson Inc. All rights reserved.

Binary I/O of Objects

• Objects can also be input and output from a binary file
– Use the writeObject method of the class
ObjectOutputStream to write an object to a binary file

– Use the readObject method of the class ObjectInputStream
to read an object from a binary file

– In order to use the value returned by readObject as an object of a
class, it must be type cast first:

SomeClass someObject =

 (SomeClass)objectInputStream.readObject();

10-93 Copyright © 2016 Pearson Inc. All rights reserved.

Binary I/O of Objects

• It is best to store the data of only one class type in any one file
– Storing objects of multiple class types or objects of one class type

mixed with primitives can lead to loss of data

• In addition, the class of the object being read or written must
implement the Serializable interface
– The Serializable interface is easy to use and requires no

knowledge of interfaces

– A class that implements the Serializable interface is said to be a
serializable class

10-94 Copyright © 2016 Pearson Inc. All rights reserved.

The Serializable Interface

• In order to make a class serializable, simply add
implements Serializable to the
heading of the class definition

 public class SomeClass implements Serializable

• When a serializable class has instance variables
of a class type, then all those classes must be
serializable also

– A class is not serializable unless the classes for all
instance variables are also serializable for all levels of
instance variables within classes

10-95 Copyright © 2016 Pearson Inc. All rights reserved.

Array Objects in Binary Files

• Since an array is an object, arrays can also be read
and written to binary files using readObject and
writeObject

– If the base type is a class, then it must also be serializable,
just like any other class type

– Since readObject returns its value as type Object (like
any other object), it must be type cast to the correct array
type:

SomeClass[] someObject =

 (SomeClass[])objectInputStream.readObject();

10-96 Copyright © 2016 Pearson Inc. All rights reserved.

Random Access to Binary Files

• The streams for sequential access to files are
the ones most commonly used for file access
in Java

• However, some applications require very rapid
access to records in very large databases
– These applications need to have random access to

particular parts of a file

10-97 Copyright © 2016 Pearson Inc. All rights reserved.

Reading and Writing to the Same File

• The stream class RandomAccessFile, which is in the
java.io package, provides both read and write random
access to a file in Java

• A random access file consists of a sequence of numbered
bytes
– There is a kind of marker called the file pointer that is always

positioned at one of the bytes

– All reads and writes take place starting at the file pointer location

– The file pointer can be moved to a new location with the method
seek

10-98 Copyright © 2016 Pearson Inc. All rights reserved.

Reading and Writing to the Same File

• Although a random access file is byte oriented, there
are methods that allow for reading or writing values
of the primitive types as well as string values to/from
a random access file
– These include readInt, readDouble, and readUTF

for input, and writeInt, writeDouble, and
writeUTF for output

– It does no have writeObject or readObject
methods, however

10-99 Copyright © 2016 Pearson Inc. All rights reserved.

Opening a File

• The constructor for RandomAccessFile takes
either a string file name or an object of the class
File as its first argument

• The second argument must be one of four strings:
– "rw", meaning the code can both read and write to the

file after it is open
– "r", meaning the code can read form the file, but not

write to it
– "rws" or "rwd" (See Table of methods from
RandomAccessFile)

10-100 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: A Random Access File Need Not Start
Empty

• If the file already exists, then when it is opened, the
length is not reset to 0, and the file pointer will be
positioned at the start of the file
– This ensures that old data is not lost, and that the file

pointer is set for the most likely position for reading (not
writing)

• The length of the file can be changed with the
setLength method
– In particular, the setLength method can be used to

empty the file

10-101 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 1 of 7)

10-102 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 2 of 7)

10-103 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 3 of 7)

10-104 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 4 of 7)

10-105 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 5 of 7)

10-106 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 6 of 7)

10-107 Copyright © 2016 Pearson Inc. All rights reserved.

Some Methods of the Class RandomAccessFile
(Part 7 of 7)

10-108 Copyright © 2016 Pearson Inc. All rights reserved.

