
Chapter 2

Console Input and
Output

Copyright © 2016 Pearson Inc. All
rights reserved.

System.out.println for console output

• System.out is an object that is part of the Java
language

• println is a method invoked by the
System.out object that can be used for
console output
– The data to be output is given as an argument in

parentheses
– A plus sign is used to connect more than one item
– Every invocation of println ends a line of output

System.out.println("The answer is " + 42);

2-2 Copyright © 2016 Pearson Inc. All rights reserved.

println Versus print

• Another method that can be invoked by the
System.out object is print

• The print method is like println, except
that it does not end a line

– With println, the next output goes on a new
line

– With print, the next output goes on the same
line

2-3 Copyright © 2016 Pearson Inc. All rights reserved.

Formatting Output with printf

• Starting with version 5.0, Java includes a method named
printf that can be used to produce output in a specific
format

• The Java method printf is similar to the print method
– Like print, printf does not advance the output to the next line

• System.out.printf can have any number of arguments
– The first argument is always a format string that contains one or more

format specifiers for the remaining arguments
– All the arguments except the first are values to be output to the

screen

2-4 Copyright © 2016 Pearson Inc. All rights reserved.

printf Format Specifier

• The code
 double price = 19.8;

 System.out.print("$");

 System.out.printf("%6.2f", price);

 System.out.println(" each");

 will output the line
 $ 19.80 each

• The format string "%6.2f" indicates the following:
– End any text to be output and start the format specifier (%)
– Display up to 6 right-justified characters, pad fewer than six characters

on the left with blank spaces (i.e., field width is 6)
– Display exactly 2 digits after the decimal point (.2)
– Display a floating point number, and end the format specifier (i.e., the

conversion character is f)

2-5 Copyright © 2016 Pearson Inc. All rights reserved.

Right and Left Justification in printf

• The code
double value = 12.123;

System.out.printf("Start%8.2fEnd", value);

System.out.println();

System.out.printf("Start%-8.2fEnd", value);

System.out.println();

will output the following
Start 12.12End

Start12.12 End

• The format string "Start%8.2fEnd" produces output that is right
justified with three blank spaces before the 12.12

• The format string "Start%-8.2fEnd" produces output that is left
justified with three blank spaces after the 12.12

2-6 Copyright © 2016 Pearson Inc. All rights reserved.

Multiple arguments with printf

• The following code contains a printf statement
having three arguments
– The code

double price = 19.8;

String name = "magic apple";

System.out.printf("$%6.2f for each %s.",

 price, name);

System.out.println();

System.out.println("Wow");

 will output
$ 19.80 for each magic apple.

Wow

– Note that the first argument is a format string containing two
format specifiers (%6.2f and %s)

– These format specifiers match up with the two arguments that
follow (price and name)

2-7 Copyright © 2016 Pearson Inc. All rights reserved.

Line Breaks with printf

• Line breaks can be included in a format string using
%n

• The code
double price = 19.8;

String name = "magic apple";

System.outprintf("$%6.2f for each %s.%n",

price, name);

System.out.println("Wow");

 will output
$ 19.80 for each magic apple.

Wow

2-8 Copyright © 2016 Pearson Inc. All rights reserved.

Format Specifiers for System.out.printf

2-9 Copyright © 2016 Pearson Inc. All rights reserved.

The printf Method (Part 1 of 3)

2-10 Copyright © 2016 Pearson Inc. All rights reserved.

The printf Method (Part 2 of 3)

2-11 Copyright © 2016 Pearson Inc. All rights reserved.

The printf Method (Part 3 of 3)

2-12 Copyright © 2016 Pearson Inc. All rights reserved.

Formatting Money Amounts with printf

• A good format specifier for outputting an amount
of money stored as a double type is %.2f

• It says to include exactly two digits after the
decimal point and to use the smallest field width
that the value will fit into:
 double price = 19.99;

 System.out.printf("The price is $%.2f each.")

 produces the output:
 The price is $19.99 each.

2-13 Copyright © 2016 Pearson Inc. All rights reserved.

Legacy Code

• Code that is "old fashioned" but too expensive to
replace is called legacy code

• Sometimes legacy code is translated into a more
modern language

• The Java method printf is just like a C language
function of the same name

• This was done intentionally to make it easier to
translate C code into Java

2-14 Copyright © 2016 Pearson Inc. All rights reserved.

Money Formats

• Using the NumberFormat class enables a program to output
amounts of money using the appropriate format
– The NumberFormat class must first be imported in order to use it

import java.text.NumberFormat

– An object of NumberFormat must then be created using the
getCurrencyInstance() method

– The format method takes a floating-point number as an argument
and returns a String value representation of the number in the local
currency

2-15 Copyright © 2016 Pearson Inc. All rights reserved.

Money Formats
import java.text.NumberFormat;

public class CurrencyFormatDemo

{

 public static void main(String[] args)

 {

 System.out.println("Default location:");

 NumberFormat moneyFormater =

 NumberFormat.getCurrencyInstance();

 System.out.println(moneyFormater.format(19.8));

 System.out.println(moneyFormater.format(19.81111));

 System.out.println(moneyFormater.format(19.89999));

 System.out.println(moneyFormater.format(19));

 System.out.println();

 }

}

2-16 Copyright © 2016 Pearson Inc. All rights reserved.

Money Formats

• Output of the previous program

Default location:

$19.80

$19.81

$19.90

$19.00

2-17 Copyright © 2016 Pearson Inc. All rights reserved.

Specifying Locale

• Invoking the getCurrencyInstance() method
without any arguments produces an object that will
format numbers according to the default location

• In contrast, the location can be explicitly specified by
providing a location from the Locale class as an
argument to the getCurrencyInstance()
method
– When doing so, the Locale class must first be imported

import java.util.Locale;

2-18 Copyright © 2016 Pearson Inc. All rights reserved.

Specifiying Locale
import java.text.NumberFormat;

import java.util.Locale;

public class CurrencyFormatDemo

{

 public static void main(String[] args)

 {

 System.out.println("US as location:");

 NumberFormat moneyFormater2 =

 NumberFormat.getCurrencyInstance(Locale.US);

 System.out.println(moneyFormater2.format(19.8));

 System.out.println(moneyFormater2.format(19.81111));

 System.out.println(moneyFormater2.format(19.89999));

 System.out.println(moneyFormater2.format(19));

 }

}

2-19 Copyright © 2016 Pearson Inc. All rights reserved.

Specifying Locale

• Output of the previous program

US as location:

$19.80

$19.81

$19.90

$19.00

2-20 Copyright © 2016 Pearson Inc. All rights reserved.

Locale Constants for Currencies of Different
Countries

2-21 Copyright © 2016 Pearson Inc. All rights reserved.

Importing Packages and Classes

• Libraries in Java are called packages
– A package is a collection of classes that is stored in a manner that

makes it easily accessible to any program

– In order to use a class that belongs to a package, the class must be
brought into a program using an import statement

– Classes found in the package java.lang are imported automatically
into every Java program
import java.text.NumberFormat;

 // import theNumberFormat class only

import java.text.*;

 //import all the classes in package java.text

2-22 Copyright © 2016 Pearson Inc. All rights reserved.

The DecimalFormat Class

• Using the DecimalFormat class enables a program to
format numbers in a variety of ways
– The DecimalFormat class must first be imported

– A DecimalFormat object is associated with a pattern when it is
created using the new command

– The object can then be used with the method format to create
strings that satisfy the format

– An object of the class DecimalFormat has a number of different
methods that can be used to produce numeral strings in various
formats

2-23 Copyright © 2016 Pearson Inc. All rights reserved.

The DecimalFormat Class
(Part 1 of 3)

2-24 Copyright © 2016 Pearson Inc. All rights reserved.

The DecimalFormat Class
(Part 2 of 3)

2-25 Copyright © 2016 Pearson Inc. All rights reserved.

The DecimalFormat Class
(Part 3 of 3)

2-26 Copyright © 2016 Pearson Inc. All rights reserved.

Console Input Using the Scanner Class

• Starting with version 5.0, Java includes a class for doing simple
keyboard input named the Scanner class

• In order to use the Scanner class, a program must include
the following line near the start of the file:
import java.util.Scanner

• This statement tells Java to
– Make the Scanner class available to the program

– Find the Scanner class in a library of classes (i.e., Java package)
named java.util

2-27 Copyright © 2016 Pearson Inc. All rights reserved.

Console Input Using the Scanner Class

• The following line creates an object of the class
Scanner and names the object keyboard :
Scanner keyboard = new Scanner(System.in);

• Although a name like keyboard is often used, a
Scanner object can be given any name
– For example, in the following code the Scanner object is

named scannerObject

Scanner scannerObject = new

Scanner(System.in);

• Once a Scanner object has been created, a program
can then use that object to perform keyboard input using
methods of the Scanner class

2-28 Copyright © 2016 Pearson Inc. All rights reserved.

Console Input Using the Scanner Class

• The method nextInt reads one int value typed in at
the keyboard and assigns it to a variable:
int numberOfPods = keyboard.nextInt();

• The method nextDouble reads one double value
typed in at the keyboard and assigns it to a variable:
double d1 = keyboard.nextDouble();

• Multiple inputs must be separated by whitespace and
read by multiple invocations of the appropriate method
– Whitespace is any string of characters, such as blank spaces, tabs,

and line breaks that print out as white space

2-29 Copyright © 2016 Pearson Inc. All rights reserved.

Console Input Using the Scanner Class

• The method next reads one string of non-whitespace
characters delimited by whitespace characters such as
blanks or the beginning or end of a line

• Given the code
String word1 = keyboard.next();

String word2 = keyboard.next();

 and the input line
jelly beans

 The value of word1 would be jelly, and the value of
word2 would be beans

2-30 Copyright © 2016 Pearson Inc. All rights reserved.

Console Input Using the Scanner Class

• The method nextLine reads an entire line of keyboard input
• The code,

String line = keyboard.nextLine();

 reads in an entire line and places the string that is read into the
variable line

• The end of an input line is indicated by the escape sequence '\n'
– This is the character input when the Enter key is pressed
– On the screen it is indicated by the ending of one line and the beginning

of the next line

• When nextLine reads a line of text, it reads the '\n' character, so
the next reading of input begins on the next line
– However, the '\n' does not become part of the string value returned

(e.g., the string named by the variable line above does not end with
the '\n' character)

2-31 Copyright © 2016 Pearson Inc. All rights reserved.

Keyboard Input Demonstration
(Part 1 of 2)

2-32 Copyright © 2016 Pearson Inc. All rights reserved.

Keyboard Input Demonstration
(Part 2 of 2)

2-33 Copyright © 2016 Pearson Inc. All rights reserved.

Another Keyboard Input Demonstration (Part 1
of 3)

2-34 Copyright © 2016 Pearson Inc. All rights reserved.

Another Keyboard Input Demonstration (Part 2
of 3)

2-35 Copyright © 2016 Pearson Inc. All rights reserved.

Another Keyboard Input Demonstration (Part 3
of 3)

2-36 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Dealing with the Line Terminator, '\n'

• The method nextLine of the class Scanner reads the
remainder of a line of text starting wherever the last keyboard
reading left off

• This can cause problems when combining it with different methods
for reading from the keyboard such as nextInt

• Given the code,
Scanner keyboard = new Scanner(System.in);

int n = keyboard.nextInt();

String s1 = keyboard.nextLine();

String s2 = keyboard.nextLine();

 and the input,
2

Heads are better than

1 head.

 what are the values of n, s1, and s2?

2-37 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Dealing with the Line Terminator, '\n'

• Given the code and input on the previous slide
n will be equal to "2",

s1 will be equal to "", and

s2 will be equal to "heads are better than"

• If the following results were desired instead
n equal to "2",

s1 equal to "heads are better than", and

s2 equal to "1 head"

 then an extra invocation of nextLine would be
needed to get rid of the end of line character ('\n')

2-38 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 1 of 3)

2-39 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 2 of 3)

2-40 Copyright © 2016 Pearson Inc. All rights reserved.

Methods in the Class Scanner
(Part 3 of 3)

2-41 Copyright © 2016 Pearson Inc. All rights reserved.

Programming Tip: Prompt for
Input

• A program should always prompt the user
when he or she needs to input some data:
System.out.println(

 "Enter the number of pods followed by");

System.out.println(

 "the number of peas in a pod:");

2-42 Copyright © 2016 Pearson Inc. All rights reserved.

Programming Tip: Echo Input

• Always echo all input that a program
receives from the keyboard

• In this way a user can check that he or she
has entered the input correctly
– Even though the input is automatically

displayed as the user enters it, echoing the
input may expose subtle errors (such as
entering the letter "O" instead of a zero)

2-43 Copyright © 2016 Pearson Inc. All rights reserved.

Self-Service Checkout Line (Part 1 of 2)

2-44 Copyright © 2016 Pearson Inc. All rights reserved.

Self-Service Checkout Line (Part 2 of 2)

2-45 Copyright © 2016 Pearson Inc. All rights reserved.

The Empty String

• A string can have any number of characters, including
zero characters
– "" is the empty string

• When a program executes the nextLine method
to read a line of text, and the user types nothing on
the line but presses the Enter key, then the
nextLine Method reads the empty string

2-46 Copyright © 2016 Pearson Inc. All rights reserved.

Other Input Delimiters

• The delimiters that separate keyboard input can be changed
when using the Scanner class

• For example, the following code could be used to create a
Scanner object and change the delimiter from whitespace
to "##"
Scanner keyboard2 = new Scanner(System.in);

Keyboard2.useDelimiter("##");

• After invocation of the useDelimiter method, "##" and
not whitespace will be the only input delimiter for the input
object keyboard2

2-47 Copyright © 2016 Pearson Inc. All rights reserved.

Changing the Input Delimiter
(Part 1 of 3)

2-48 Copyright © 2016 Pearson Inc. All rights reserved.

Changing the Input Delimiter
(Part 2 of 3)

2-49 Copyright © 2016 Pearson Inc. All rights reserved.

Changing the Input Delimiter
(Part 3 of 3)

2-50 Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to File Input/Output

• The Scanner class can also be used to read from files
on the disk

• Here we only present the basic structure of reading
from text files

– Some keywords are introduced without full explanation

– More detail in Chapter 10

– By covering the basics here your programs can work with
real-world data that would otherwise be too much work to
type into your program every time it is run

2-51 Copyright © 2016 Pearson Inc. All rights reserved.

Text Input

• Import the necessary classes in addition to Scanner
import java.io.FileInputStream;

import java.io.FileNotFoundException;

• Open the file inside a try/catch block

– If an error occurs while trying to open the file then
execution jumps to the catch block

– This is discussed in more detail in Chapter 9

• Use nextInt(), nextLine(), etc. to read from the
Scanner like reading from the console, except the
input comes from the file

2-52 Copyright © 2016 Pearson Inc. All rights reserved.

Try/Catch Block

2-53 Copyright © 2016 Pearson Inc. All rights reserved.

Scanner fileIn = null ; // initializes fileIn to empty

try

{

 // Attempt to open the file

 fileIn = new Scanner(new FileInputStream("PathToFile"));

}

catch (FileNotFoundException e)

{

 // If the file could not be found, this code is executed

 // and then the program exits

 System.out.println("File not found.");

 System.exit(0);

}

... Code continues here

Text File to Read

2-54 Copyright © 2016 Pearson Inc. All rights reserved.

This file should be stored in the same folder as the Java
program in the following display

Program to Read a Text File

2-55 Copyright © 2016 Pearson Inc. All rights reserved.

Program to Read a Text File

2-56 Copyright © 2016 Pearson Inc. All rights reserved.

