
Chapter 3

Flow of Control

Copyright © 2016 Pearson Inc. All
rights reserved.

Flow of Control

• As in most programming languages, flow of control in Java
refers to its branching and looping mechanisms

• Java has several branching mechanisms: if-else, if, and
switch statements

• Java has three types of loop statements: the while, do-
while, and for statements

• Most branching and looping statements are controlled by
Boolean expressions
– A Boolean expression evaluates to either true or false
– The primitive type boolean may only take the values true or
false

3-2 Copyright © 2016 Pearson Inc. All rights reserved.

if statement

if (isMoving){

 // the "then" clause: decrease current speed

 currentSpeed--;

}

3-3 Copyright © 2016 Pearson Inc. All rights reserved.

if-then-else

if (isMoving) {

 currentSpeed--;

} else {

 System.err.println("The bicycle has already
stopped!");

}

3-4 Copyright © 2016 Pearson Inc. All rights reserved.

nested if’s

int testscore = 76;

char grade;

if (testscore >= 90) {

 grade = 'A';

} else if (testscore >= 80) {

 grade = 'B';

} else if (testscore >= 70) {

 grade = 'C';

}

else if (testscore >= 60) {

 grade = 'D';

} else {

 grade = 'F';

}

System.out.println("Grade = " + grade);

3-5 Copyright © 2016 Pearson Inc. All rights reserved.

switch

int month = 8;

String monthString;

switch (month) {

 case 1: monthString = "January";

 break;

 case 2: monthString = "February";

 break;

 case 3: monthString = "March";

 break;

 // and so on

 case 12: monthString = "December";

 break;

 default: monthString = "Invalid month";

 break;

 } // switch

System.out.println(monthString);

3-6 Copyright © 2016 Pearson Inc. All rights reserved.

how to write the switch statement

• Always use “break”

• Do not use fall-through

– don’t attempt to know what it is!

• Always have a default case.

3-7 Copyright © 2016 Pearson Inc. All rights reserved.

while loop

while (expression) {

 statement(s)

}

3-8 Copyright © 2016 Pearson Inc. All rights reserved.

int count = 1;

while (count < 11) {

 System.out.println("Count is: " + count);
 count++;

}

3-9 Copyright © 2016 Pearson Inc. All rights reserved.

do-while

do {

 statement(s)

} while (expression);

3-10 Copyright © 2016 Pearson Inc. All rights reserved.

int count = 1;

do {

 System.out.println("Count is: " + count);
 count++;

} while (count < 11);

3-11 Copyright © 2016 Pearson Inc. All rights reserved.

for statement

for (initialization; termination; increment) {

 statement(s)

}

3-12 Copyright © 2016 Pearson Inc. All rights reserved.

for(int i=1; i<11; i++){

 System.out.println("Count is: " + i);

 }
Count is: 1

Count is: 2

Count is: 3

Count is: 4

Count is: 5

Count is: 6

Count is: 7

 Count is: 8

Count is: 9

Count is: 10

3-13 Copyright © 2016 Pearson Inc. All rights reserved.

The break Statement

• An unlabeled break statement terminates the
innermost switch, for, while, or do-
while statement,

• but a labeled break terminates an outer
statement.

3-14 Copyright © 2016 Pearson Inc. All rights reserved.

unlabeled break

int i;

boolean foundIt = false;

for (i = 0; i < arrayOfInts.length; i++) {

 if (arrayOfInts[i] == searchfor) {

 foundIt = true;

 break; // break the inner for- loop

 }

} // for

3-15 Copyright © 2016 Pearson Inc. All rights reserved.

labeled break

search:

for (i = 0; i < arrayOfInts.length; i++) {

 for (j = 0; j < arrayOfInts[i].length; j++) {

 if (arrayOfInts[i][j] == searchfor) {

 foundIt = true;

 break search;

 }

 } // inner for-loop

} // outer for-loop

the outer loop is labeled “search”

‘break search’ breaks the outer loop

3-16 Copyright © 2016 Pearson Inc. All rights reserved.

The continue Statement

• The continue statement skips the current
iteration of a for, while , or do-while loop.

3-17 Copyright © 2016 Pearson Inc. All rights reserved.

unlabeled continue

String searchMe = "peter piper picked a " + "peck of pickled peppers";

 int max = searchMe.length();

int numPs = 0;

for (int i = 0; i < max; i++) {

 // interested only in p's

 if (searchMe.charAt(i) != 'p')

 continue;

 // process p's

 numPs++;

} //for

System.out.println("Found " + numPs + " p's in the string.");

//Count the number of ‘p’ in a string

3-18 Copyright © 2016 Pearson Inc. All rights reserved.

labeled continue

• A labeled continue statement skips the
current iteration of an outer loop marked with
the given label.

3-19 Copyright © 2016 Pearson Inc. All rights reserved.

use of break and continue

• Whenever a normal flow of a loop is
“interrupted” be a break or continue,

• the chance of undetected bug occurring is
high

• Phone system of New York city went down for
a day due to a wrong “continue”

3-20 Copyright © 2016 Pearson Inc. All rights reserved.

Branching with an if-else Statement

• An if-else statement chooses between two alternative
statements based on the value of a Boolean expression

if (Boolean_Expression)

 Yes_Statement

else

 No_Statement

– The Boolean_Expression must be enclosed in parentheses
– If the Boolean_Expression is true, then the Yes_Statement

is executed
– If the Boolean_Expression is false, then the No_Statement is

executed

3-21 Copyright © 2016 Pearson Inc. All rights reserved.

Compound Statements

• Each Yes_Statement and No_Statement
branch of an if-else can be a made up of a single
statement or many statements

• Compound Statement: A branch statement that is
made up of a list of statements
– A compound statement must always be enclosed in a pair

of braces ({ })

– A compound statement can be used anywhere that a
single statement can be used

3-22 Copyright © 2016 Pearson Inc. All rights reserved.

Compound Statements

if (myScore > your Score)

{

 System.out.println("I win!");

 wager = wager + 100;

}

else

{

 System.out.println

 ("I wish these were golf scores.");

 wager = 0;

}

3-23 Copyright © 2016 Pearson Inc. All rights reserved.

Omitting the else Part

• The else part may be omitted to obtain what is often called
an if statement

if (Boolean_Expression)

 Action_Statement

– If the Boolean_Expression is true, then the
Action_Statement is executed

– The Action_Statement can be a single or compound statement

– Otherwise, nothing happens, and the program goes on to the next
statement

if (weight > ideal)

 calorieIntake = calorieIntake – 500;

3-24 Copyright © 2016 Pearson Inc. All rights reserved.

Nested Statements

• if-else statements and if statements both
contain smaller statements within them

– For example, single or compound statements

• In fact, any statement at all can be used as a subpart
of an if-else or if statement, including another
if-else or if statement

– Each level of a nested if-else or if should be indented
further than the previous level

– Exception: multiway if-else statements

3-25 Copyright © 2016 Pearson Inc. All rights reserved.

Multiway if-else Statements

• The multiway if-else statement is simply a normal if-
else statement that nests another if-else statement at
every else branch
– It is indented differently from other nested statements

– All of the Boolean_Expressions are aligned with one another,
and their corresponding actions are also aligned with one another

– The Boolean_Expressions are evaluated in order until one that
evaluates to true is found

– The final else is optional

3-26 Copyright © 2016 Pearson Inc. All rights reserved.

Multiway if-else Statement

if (Boolean_Expression)

 Statement_1

else if (Boolean_Expression)

 Statement_2

else if (Boolean_Expression_n)

 Statement_n

else

 Statement_For_All_Other_Possibilities

. .
 .

3-27 Copyright © 2016 Pearson Inc. All rights reserved.

The switch Statement

• The switch statement is the only other kind of Java
statement that implements multiway branching
– When a switch statement is evaluated, one of a number

of different branches is executed

– The choice of which branch to execute is determined by a
controlling expression enclosed in parentheses after the
keyword switch

• The controlling expression must evaluate to a char, int, short,
or byte

3-28 Copyright © 2016 Pearson Inc. All rights reserved.

The switch Statement

• Each branch statement in a switch statement starts with the
reserved word case, followed by a constant called a case
label, followed by a colon, and then a sequence of statements
– Each case label must be of the same type as the controlling expression

– Case labels need not be listed in order or span a complete interval, but
each one may appear only once

– Each sequence of statements may be followed by a break statement
(break;)

3-29 Copyright © 2016 Pearson Inc. All rights reserved.

The switch Statement

• There can also be a section labeled default:
– The default section is optional, and is usually last

– Even if the case labels cover all possible outcomes in a given
switch statement, it is still a good practice to include a default
section
• It can be used to output an error message, for example

• When the controlling expression is evaluated, the code for
the case label whose value matches the controlling
expression is executed

– If no case label matches, then the only statements executed are
those following the default label (if there is one)

3-30 Copyright © 2016 Pearson Inc. All rights reserved.

The switch Statement

• The switch statement ends when it executes a
break statement, or when the end of the switch
statement is reached
– When the computer executes the statements after a case

label, it continues until a break statement is reached
– If the break statement is omitted, then after executing

the code for one case, the computer will go on to execute
the code for the next case

– If the break statement is omitted inadvertently, the
compiler will not issue an error message

3-31 Copyright © 2016 Pearson Inc. All rights reserved.

The switch Statement

switch (Controlling_Expression)

{

 case Case_Label_1:

 Statement_Sequence_1

 break;

 case Case_Label_2:

 Statement_Sequence_2

 break;

 case Case_Label_n:

 Statement_Sequence_n

 break;

 default:

 Default_Statement Sequence

 break;

}

. .
 .

3-32 Copyright © 2016 Pearson Inc. All rights reserved.

• The conditional operator is a notational variant on certain forms of the
if-else statement
– Also called the ternary operator or arithmetic if
– The following examples are equivalent:

if (n1 > n2) max = n1;

else max = n2;

 vs.

max = (n1 > n2) ? n1 : n2;

– The expression to the right of the assignment operator is a conditional
operator expression

– If the Boolean expression is true, then the expression evaluates to the value of
the first expression (n1), otherwise it evaluates to the value of the second
expression (n2)

The Conditional Operator

3-33 Copyright © 2016 Pearson Inc. All rights reserved.

Boolean Expressions

• A Boolean expression is an expression that is either true or
false

• The simplest Boolean expressions compare the value of two
expressions

time < limit

yourScore == myScore

– Note that Java uses two equal signs (==) to perform equality testing:
A single equal sign (=) is used only for assignment

– A Boolean expression does not need to be enclosed in parentheses,
unless it is used in an if-else statement

3-34 Copyright © 2016 Pearson Inc. All rights reserved.

Java Comparison Operators

3-35 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Using == with Strings

• The equality comparison operator (==) can correctly test two
values of a primitive type

• However, when applied to two objects such as objects of the
String class, == tests to see if they are stored in the same
memory location, not whether or not they have the same
value

• In order to test two strings to see if they have equal values,
use the method equals, or equalsIgnoreCase

string1.equals(string2)

string1.equalsIgnoreCase(string2)

3-36 Copyright © 2016 Pearson Inc. All rights reserved.

Lexicographic and Alphabetical Order

• Lexicographic ordering is the same as ASCII ordering, and includes letters,
numbers, and other characters
– All uppercase letters are in alphabetic order, and all lowercase letters are in

alphabetic order, but all uppercase letters come before lowercase letters
– If s1 and s2 are two variables of type String that have been given String

values, then s1.compareTo(s2) returns a negative number if s1 comes
before s2 in lexicographic ordering, returns zero if the two strings are equal,
and returns a positive number if s2 comes before s1

• When performing an alphabetic comparison of strings (rather than a
lexicographic comparison) that consist of a mix of lowercase and
uppercase letters, use the compareToIgnoreCase method instead

3-37 Copyright © 2016 Pearson Inc. All rights reserved.

Building Boolean Expressions

• When two Boolean expressions are combined using the "and" (&&)
operator, the entire expression is true provided both expressions are true
– Otherwise the expression is false

• When two Boolean expressions are combined using the "or" (||)
operator, the entire expression is true as long as one of the expressions is
true
– The expression is false only if both expressions are false

• Any Boolean expression can be negated using the ! operator
– Place the expression in parentheses and place the ! operator in front of it

• Unlike mathematical notation, strings of inequalities must be joined by &&
– Use (min < result) && (result < max) rather than min <

result < max

3-38 Copyright © 2016 Pearson Inc. All rights reserved.

Evaluating Boolean Expressions

• Even though Boolean expressions are used to control branch
and loop statements, Boolean expressions can exist
independently as well
– A Boolean variable can be given the value of a Boolean expression by

using an assignment statement

• A Boolean expression can be evaluated in the same way that
an arithmetic expression is evaluated

• The only difference is that arithmetic expressions produce a
number as a result, while Boolean expressions produce either
true or false as their result

boolean madeIt = (time < limit) && (limit < max);

3-39 Copyright © 2016 Pearson Inc. All rights reserved.

Truth Tables

3-40 Copyright © 2016 Pearson Inc. All rights reserved.

Short-Circuit and Complete Evaluation

• Java can take a shortcut when the evaluation of the first part
of a Boolean expression produces a result that evaluation of
the second part cannot change

• This is called short-circuit evaluation or lazy evaluation
– For example, when evaluating two Boolean subexpressions joined by
&&, if the first subexpression evaluates to false, then the entire
expression will evaluate to false, no matter the value of the second
subexpression

– In like manner, when evaluating two Boolean subexpressions joined by
||, if the first subexpression evaluates to true, then the entire
expression will evaluate to true

3-41 Copyright © 2016 Pearson Inc. All rights reserved.

Short-Circuit and Complete Evaluation

• There are times when using short-circuit evaluation can
prevent a runtime error
– In the following example, if the number of kids is equal to zero, then

the second subexpression will not be evaluated, thus preventing a
divide by zero error

– Note that reversing the order of the subexpressions will not prevent
this

 if ((kids !=0) && ((toys/kids) >=2)) . . .

• Sometimes it is preferable to always evaluate both
expressions, i.e., request complete evaluation
– In this case, use the & and | operators instead of && and ||

3-42 Copyright © 2016 Pearson Inc. All rights reserved.

Precedence and Associativity Rules

• Boolean and arithmetic expressions need not be fully
parenthesized

• If some or all of the parentheses are omitted, Java will follow
precedence and associativity rules (summarized in the
following table) to determine the order of operations
– If one operator occurs higher in the table than another, it has higher

precedence, and is grouped with its operands before the operator of
lower precedence

– If two operators have the same precedence, then associativity rules
determine which is grouped first

3-43 Copyright © 2016 Pearson Inc. All rights reserved.

3-44 Copyright © 2016 Pearson Inc. All rights reserved.

Precedence
and

Associativity
Rules

Evaluating Expressions

• In general, parentheses in an expression help to document the
programmer's intent
– Instead of relying on precedence and associativity rules, it is best to include

most parentheses, except where the intended meaning is obvious

• Binding: The association of operands with their operators
– A fully parenthesized expression accomplishes binding for all the operators in

an expression

• Side Effects: When, in addition to returning a value, an expression
changes something, such as the value of a variable
– The assignment, increment, and decrement operators all produce side effects

3-45 Copyright © 2016 Pearson Inc. All rights reserved.

Rules for Evaluating Expressions

• Perform binding
– Determine the equivalent fully parenthesized expression using the

precedence and associativity rules

• Proceeding left to right, evaluate whatever subexpressions
can be immediately evaluated
– These subexpressions will be operands or method arguments, e.g.,

numeric constants or variables

• Evaluate each outer operation and method invocation as soon
as all of its operands (i.e., arguments) have been evaluated

3-46 Copyright © 2016 Pearson Inc. All rights reserved.

Loops

• Loops in Java are similar to those in other high-level
languages

• Java has three types of loop statements: the while,
the do-while, and the for statements

– The code that is repeated in a loop is called the body of the
loop

– Each repetition of the loop body is called an iteration of
the loop

3-47 Copyright © 2016 Pearson Inc. All rights reserved.

while statement

• A while statement is used to repeat a portion of code (i.e.,
the loop body) based on the evaluation of a Boolean
expression
– The Boolean expression is checked before the loop body is executed

• When false, the loop body is not executed at all

– Before the execution of each following iteration of the loop body, the
Boolean expression is checked again

• If true, the loop body is executed again

• If false, the loop statement ends

– The loop body can consist of a single statement, or multiple
statements enclosed in a pair of braces ({ })

3-48 Copyright © 2016 Pearson Inc. All rights reserved.

while (Boolean_Expression)

 Statement

 Or
while (Boolean_Expression)

{

 Statement_1

 Statement_2

 Statement_Last

}

while Syntax

. .
 .

3-49 Copyright © 2016 Pearson Inc. All rights reserved.

do-while Statement

• A do-while statement is used to execute a portion of code
(i.e., the loop body), and then repeat it based on the
evaluation of a Boolean expression
– The loop body is executed at least once

• The Boolean expression is checked after the loop body is executed

– The Boolean expression is checked after each iteration of the loop
body

• If true, the loop body is executed again
• If false, the loop statement ends
• Don't forget to put a semicolon after the Boolean expression

– Like the while statement, the loop body can consist of a single
statement, or multiple statements enclosed in a pair of braces ({ })

3-50 Copyright © 2016 Pearson Inc. All rights reserved.

do

 Statement

while (Boolean_Expression);

 Or
do

{

 Statement_1

 Statement_2

 Statement_Last

} while (Boolean_Expression);

do-while Syntax

. .
 .

3-51 Copyright © 2016 Pearson Inc. All rights reserved.

Equivalence of while and do-while
loop

3-52 Copyright © 2016 Pearson Inc. All rights reserved.

Given the following structure for a do-while loop:

 do

{

 Statements;

} while (Boolean condition);

The equivalent while loop is:

Statements;

while (Boolean condition)

{

 Statements;

}

Equivalence of do-while and while
loop

3-53 Copyright © 2016 Pearson Inc. All rights reserved.

Given the following structure for a while loop:

while (Boolean condition)

{

 Statements;

}

 The equivalent do-while loop is:

if (Boolean condition)

{

do

{

 Statements;

} while (Boolean condition);

 }

Algorithms and Pseudocode

• The hard part of solving a problem with a computer program is not dealing
with the syntax rules of a programming language

• Rather, coming up with the underlying solution method is the most
difficult part

• An algorithm is a set of precise instructions that lead to a solution
– An algorithm is normally written in pseudocode, which is a mixture of

programming language and a human language, like English
– Pseudocode must be precise and clear enough so that a good programmer can

convert it to syntactically correct code
– However, pseudocode is much less rigid than code: One needn't worry about

the fine points of syntax or declaring variables, for example

3-54 Copyright © 2016 Pearson Inc. All rights reserved.

The for Statement

• The for statement is most commonly used to step through
an integer variable in equal increments

• It begins with the keyword for, followed by three
expressions in parentheses that describe what to do with one
or more controlling variables
– The first expression tells how the control variable or variables are

initialized or declared and initialized before the first iteration
– The second expression determines when the loop should end, based

on the evaluation of a Boolean expression before each iteration
– The third expression tells how the control variable or variables are

updated after each iteration of the loop body

3-55 Copyright © 2016 Pearson Inc. All rights reserved.

The for Statement Syntax

for (Initializing; Boolean_Expression; Update)

 Body

• The Body may consist of a single statement or a list of
statements enclosed in a pair of braces ({ })

• Note that the three control expressions are separated by two,
not three, semicolons

• Note that there is no semicolon after the closing parenthesis
at the beginning of the loop

3-56 Copyright © 2016 Pearson Inc. All rights reserved.

Semantics of the for Statement

3-57 Copyright © 2016 Pearson Inc. All rights reserved.

for Statement Syntax and Alternate Semantics

3-58 Copyright © 2016 Pearson Inc. All rights reserved.

for Statement Syntax and Alternate Semantics

3-59 Copyright © 2016 Pearson Inc. All rights reserved.

The Comma in for Statements

• A for loop can contain multiple initialization actions
separated with commas
– Caution must be used when combining a declaration with multiple

actions
– It is illegal to combine multiple type declarations with multiple actions,

for example
– To avoid possible problems, it is best to declare all variables outside

the for statement

• A for loop can contain multiple update actions, separated
with commas, also
– It is even possible to eliminate the loop body in this way

• However, a for loop can contain only one Boolean
expression to test for ending the loop

3-60 Copyright © 2016 Pearson Inc. All rights reserved.

Infinite Loops

• A while, do-while, or for loop should be
designed so that the value tested in the Boolean
expression is changed in a way that eventually
makes it false, and terminates the loop

• If the Boolean expression remains true, then the
loop will run forever, resulting in an infinite loop
– Loops that check for equality or inequality (== or !=)

are especially prone to this error and should be
avoided if possible

3-61 Copyright © 2016 Pearson Inc. All rights reserved.

Nested Loops

• Loops can be nested, just like other Java structures
– When nested, the inner loop iterates from beginning to end for each

single iteration of the outer loop

int rowNum, columnNum;

for (rowNum = 1; rowNum <=3; rowNum++)

{

 for (columnNum = 1; columnNum <=2;

 columnNum++)

 System.out.print(" row " + rowNum +

 " column " + columnNum);

 System.out.println();

}

3-62 Copyright © 2016 Pearson Inc. All rights reserved.

The break and continue Statements

• The break statement consists of the keyword break
followed by a semicolon
– When executed, the break statement ends the nearest

enclosing switch or loop statement

• The continue statement consists of the keyword
continue followed by a semicolon
– When executed, the continue statement ends the current

loop body iteration of the nearest enclosing loop statement
– Note that in a for loop, the continue statement transfers

control to the update expression

• When loop statements are nested, remember that any
break or continue statement applies to the innermost,
containing loop statement

3-63 Copyright © 2016 Pearson Inc. All rights reserved.

The Labeled break Statement

• There is a type of break statement that, when used in
nested loops, can end any containing loop, not just the
innermost loop

• If an enclosing loop statement is labeled with an
Identifier, then the following version of the break
statement will exit the labeled loop, even if it is not the
innermost enclosing loop:
break someIdentifier;

• To label a loop, simply precede it with an Identifier and a
colon:
someIdentifier:

3-64 Copyright © 2016 Pearson Inc. All rights reserved.

The exit Statement

• A break statement will end a loop or switch
statement, but will not end the program

• The exit statement will immediately end the
program as soon as it is invoked:
System.exit(0);

• The exit statement takes one integer argument
– By tradition, a zero argument is used to indicate a normal

ending of the program

3-65 Copyright © 2016 Pearson Inc. All rights reserved.

Loop Bugs

• The two most common kinds of loop errors are
unintended infinite loops and off-by-one errors
– An off-by-one error is when a loop repeats the loop body

one too many or one too few times
• This usually results from a carelessly designed Boolean test

expression

– Use of == in the controlling Boolean expression can lead to
an infinite loop or an off-by-one error

• This sort of testing works only for characters and integers, and
should never be used for floating-point

3-66 Copyright © 2016 Pearson Inc. All rights reserved.

Tracing Variables

• Tracing variables involves watching one or more variables
change value while a program is running

• This can make it easier to discover errors in a program and
debug them

• Many IDEs (Integrated Development Environments) have a
built-in utility that allows variables to be traced without
making any changes to the program

• Another way to trace variables is to simply insert temporary
output statements in a program
System.out.println("n = " + n); // Tracing n

– When the error is found and corrected, the trace statements can
simply be commented out

3-67 Copyright © 2016 Pearson Inc. All rights reserved.

General Debugging Techniques

• Examine the system as a whole – don’t assume the
bug occurs in one particular place

• Try different test cases and check the input values

• Comment out blocks of code to narrow down the
offending code

• Check common pitfalls

• Take a break and come back later

• DO NOT make random changes just hoping that the
change will fix the problem!

3-68 Copyright © 2016 Pearson Inc. All rights reserved.

Debugging Example (1 of 9)
• The following code is supposed to present a

menu and get user input until either ‘a’ or ‘b’
is entered.

3-69 Copyright © 2016 Pearson Inc. All rights reserved.

String s = "";

char c = ' ';

Scanner keyboard = new Scanner(System.in);

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s.toLowerCase();

 c = s.substring(0,1);

}

while ((c != 'a') || (c != 'b'));

Debugging Example (2 of 9)

• Using the “random change” debugging
technique we might try to change the data
type of c to String, to make the types
match

• This results in more errors since the rest of the
code treats c like a char

3-70 Copyright © 2016 Pearson Inc. All rights reserved.

Result: Syntax error:

 c = s.substring(0,1); : incompatible types
 found: java.lang.String

 required: char

Debugging Example (3 of 9)
• First problem: substring returns a String, use

charAt to get the first character:

3-71 Copyright © 2016 Pearson Inc. All rights reserved.

String s = "";

char c = ' ';

Scanner keyboard = new Scanner(System.in);

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s.toLowerCase();

 c = s.charAt(0);

}

while ((c != 'a') || (c != 'b'));

Now the program compiles, but it is stuck in an infinite loop. Employ tracing:

Debugging Example (4 of 9)

3-72 Copyright © 2016 Pearson Inc. All rights reserved.

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 System.out.println("String s = " + s);

 s.toLowerCase();

 System.out.println("Lowercase s = " + s);

 c = s.charAt(0);

 System.out.println("c = " + c);

}

while ((c != 'a') || (c != 'b'));

Sample output:

Enter 'A' for option A or 'B' for option B.

A

String s = A

Lowercase s = A

c = A

Enter 'A' for option A or 'B' for option B.

From tracing we can see that the string is never changed to lowercase.
Reassign the lowercase string back to s.

Debugging Example (5 of 9)
• The following code is supposed to present a

menu and get user input until either ‘a’ or ‘b’
is entered.

3-73 Copyright © 2016 Pearson Inc. All rights reserved.

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

}

while ((c != 'a') || (c != 'b'));

However, it’s still stuck in an infinite loop. What to try next?

Debugging Example (6 of 9)
• Could try the following “patch”

3-74 Copyright © 2016 Pearson Inc. All rights reserved.

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

 if (c == 'a')

 break;

 if (c == 'b')

 break;

}

while ((c != 'a') || (c != 'b'));

This works, but it is ugly! Considered a coding atrocity, it doesn’t fix the

underlying problem. The boolean condition after the while loop has also

become meaningless. Try more tracing:

Debugging Example (7 of 9)

3-75 Copyright © 2016 Pearson Inc. All rights reserved.

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

 System.out.println("c != 'a' is " + (c != 'a'));

 System.out.println("c != 'b' is " + (c != 'b'));

 System.out.println("(c != 'a') || (c != 'b')) is "

 + ((c != 'a') || (c != 'b')));

}

while ((c != 'a') || (c != 'b'));

Sample output:
Enter 'A' for option A or 'B' for option B.

A

c != 'a' is false

c != 'b' is true

(c != 'a') || (c != 'b')) is true

From the trace we can see that the loop’s boolean expression is true because c

cannot be not equal to ‘a’ and not equal to ‘b’ at the same time.

Debugging Example (8 of 9)
• Fix: We use && instead of ||

3-76 Copyright © 2016 Pearson Inc. All rights reserved.

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

}

while ((c != 'a') && (c != 'b'));

Debugging Example (9 of 9)
• Even better: Declare a boolean variable to control

the do-while loop. This makes it clear when the loop
exits if we pick a meaningful variable name.

3-77 Copyright © 2016 Pearson Inc. All rights reserved.

boolean invalidKey;

do

{

 System.out.println("Enter 'A' for option A or 'B' for option B.");

 s = keyboard.next();

 s = s.toLowerCase();

 c = s.charAt(0);

 if (c == 'a')

 invalidKey = false;

 else if (c == 'b')

 invalidKey = false;

 else

 invalidKey = true;

}

while (invalidKey);

Assertion Checks

• An assertion is a sentence that says (asserts) something about
the state of a program
– An assertion must be either true or false, and should be true if a

program is working properly

– Assertions can be placed in a program as comments

• Java has a statement that can check if an assertion is true
assert Boolean_Expression;

– If assertion checking is turned on and the Boolean_Expression
evaluates to false, the program ends, and outputs an assertion
failed error message

– Otherwise, the program finishes execution normally

3-78 Copyright © 2016 Pearson Inc. All rights reserved.

Assertion Checks

• A program or other class containing assertions is
compiled in the usual way

• After compilation, a program can run with assertion
checking turned on or turned off
– Normally a program runs with assertion checking turned

off

• In order to run a program with assertion checking
turned on, use the following command (using the
actual ProgramName):
 java –enableassertions ProgramName

3-79 Copyright © 2016 Pearson Inc. All rights reserved.

Preventive Coding

• Incremental Development

– Write a little bit of code at a time and test it
before moving on

• Code Review

– Have others look at your code

• Pair Programming

– Programming in a team, one typing while the
other watches, and periodically switch roles

3-80 Copyright © 2016 Pearson Inc. All rights reserved.

Generating Random Numbers

• The Random class can be used to generate
pseudo-random numbers

– Not truly random, but uniform distribution based
on a mathematical function and good enough in
most cases

• Add the following import

 import java.util.Random;

• Create an object of type Random
 Random rnd = new Random();

3-81 Copyright © 2016 Pearson Inc. All rights reserved.

Generating Random Numbers

• To generate random numbers use the nextInt()
method to get a random number from 0 to n-1

int i = rnd.nextInt(10); // Random number from 0 to 9

• Use the nextDouble() method to get a random
number from 0 to 1 (always less than 1)

double d = rnd.nextDouble(); // d is >=0 and < 1

3-82 Copyright © 2016 Pearson Inc. All rights reserved.

Simulating a Coin Flip

3-83 Copyright © 2016 Pearson Inc. All rights reserved.

