
Class definition

Based on text of M. Smith: “Java, an object-oriented language”.

McGraw Hill.

Consider the following class definition

class Account {

 private double theBalance = 0.0;

 private double theMinBalance = 0.0;

 public Account() {

 theBalance = theMinBalance = 0.0;

 }

 public double accountBalance() {

 return theBalance;

 }

 public double withdraw(final double money) {

 if (theBalance - money >= theMinBalance) {

 theBalance = theBalance - money;

 return money;

 }

 else {

 return 0.0;

 }

 } // withdraw

 public void deposit (final double money {

 theBalance = theBalance + money;

 }

 public void setMinBalance (final double money) {

 theMinBalance = money;

 }

} // account

The following is a Java application that tests class Account.

class TestAccount {

 public static void main (String args []) {

 Account mike;

 mike = new Account();

 Account corinna = new Account();

 double obtained;

 System.out.println("Mike's balance =" +

mike.accountBalance());

 mike.deposit(100.0);

 System.out.println("Mike's balance =" +

mike.accountBalance());

 obtained = mike.withdraw(20.0);

 System.out.println("Mike has withdrawn : " +

obtained);

 System.out.println("Mike's balance =" +

mike.accountBalance());

 corinna.deposit(50.0);

 System.out.println("Corinna's balance =" +

corinna.accountBalance());

 } // main

} //TestAccount

Inheritance

Suppose we wish to create a new class, called

AccountWithStatement, that has all the properties (methods and

variables) of Account, plus additional methods and variables.

Additional method:

 Statement: returns a string representing a mini-statement for

the account

Additional variables:

 theAccountName: holds the account holder’s name.

 theStatementNo: unique number identifying the statement

The class Account is the super class, or base class. Class

AccountWithStatement is the subclass or derived class.

Class diagram

 Use keyword extends to indicate inheritance.

class AccountWithStatement extends Account {

 private String theAccountName;

 private long theStatementNo;

 public AccountWithStatement() { //first constructor

 theAccountName = "Anonymous";

 theStatementNo = 1;

 }

 public AccountWithStatement(final String name) {

//second constructor

 theAccountName = name;

 theStatementNo = 1;

 }

Account

theBalance

theMinBalance

deposit

withdraw

accountBalance

setMinBalance

AccountWithStatement

theAccountName

theStatementNo

statement

 public String statement() {

 return "Statement # " + theStatementNo++ + " for " +

theAccountName + "\n" +

 " The balance of your account is : $" +

accountBalance() + "\n";

 }

} // AccountWithStatement

A signature of a method is its parameter list. Methods in the same

visibility scope can have same names as long as their signatures

are different.

 AccountWithStatement()

 AccountWithStatement(final String name)

The subclass has (inherits) the implementations of the methods and

variables defined in the super class (that is, we can use them

without redefining them in the subclass.)

Here is a Java application to test the above class.

class TestAccountWithStatement {

 public static void main (String args []){

 AccountWithStatement mike = new

AccountWithStatement("Mike");

 double obtained;

 System.out.println("Mike's balance = " +

mike.accountBalance());

 System.out.println("Mike has deposit $100");

 mike.deposit(100.0);

 System.out.println("Mike's balance = " +

mike.accountBalance());

 obtained = mike.withdraw(20.0);

 System.out.println("Mike has withdrawn : " +

obtained);

 System.out.println(mike.statement());

 System.out.println("Mike has deposit $50");

 mike.deposit(50.0);

 System.out.println(mike.statement());

 }// main

}// class TestAccountWithStatement

Method overriding

Class A implements method M.

Class B extends class A.

In class B, we can implement M is a different way.

/* class RestrictedAccount is a subclass of class Account,

it inherits all variables and methods of class Account, it

may contain other variables and methods, it may also

override a method of class Account

*/

class RestrictedAccount extends Account {

 private static final int MAXWITHDRAWALS = 3;

 private int theNoWithdrawToGo = MAXWITHDRAWALS;

 public void reset() {

 theNoWithdrawToGo = MAXWITHDRAWALS;

 }

 public double withdraw(final double amount) {

//overriding the super class method

 if (theNoWithdrawToGo > 0){

 theNoWithdrawToGo--;

 return super.withdraw(amount); // apply the super

class’ implementation

 }

 else {

 return 0.0;

 }

 } // withdraw

} // RestrictedAccount

// a static variable is a class variable, there is only one for each

class

// non-static variable: one for each object.

In the above, the default constructor is created to call the

constructor in the super class’ method.

Here is an application to test class RestrictedAccount

class TestRestrictedAccount {

 public static void main (String args []) {

 RestrictedAccount mike;

 mike = new RestrictedAccount();

 Account corinna = new Account();

 double obtained;

 mike.deposit(100.0);

 System.out.println("Mike's balance = " +

mike.accountBalance());

 for (int i = 1; i <= 4; i++){

 obtained = mike.withdraw(20.0);

 System.out.println("Mike has withdrawn " +

obtained);

 } //for

 System.out.println("Mike's balance = " +

mike.accountBalance());

 System.out.println();

 corinna.deposit(100.0);

 System.out.println("Corinna's balance = " +

corinna.accountBalance());

 for (int i = 1; i <= 4; i++) {

 obtained = corinna.withdraw(20.0);

 System.out.println("Corinna has withdrawn "

+ obtained);

 } // for

 System.out.println("Corinna's balance = " +

corinna.accountBalance());

 System.out.println();

 }// main

} // TestRestrictedAccount

Abstract methods and classes

Method M in class C is abstract if it is declared but not

implemented in C. Subclasses of C are expected to implement M.

A class is abstract if it contains an abstract method. We cannot

make objects of an abstract class (why?).

Here is an example of an abstract class.

abstract class AbstractAccount {

 private double theBalance = 0.0;

 public double accountBalance(){

 return theBalance;

 }

 public double withdraw(final double money){

 if (theBalance - money >= 0.0){

 theBalance = theBalance - money;

 return money;

 }

 else {

 return 0.0;

 }

 }//withdraw

 public void deposit (final double money){

 theBalance = theBalance + money;

 }

 abstract public String statement(); //abstract method,

to be implemented in subclass

} // AbtractAccount

Here is an example of a class that is a subclass of an

abstract class.

class NormalAccount extends AbstractAccount {

 private String theName = "";

 NormalAccount(String name){

 theName = name;

 }

 public String statement() { // implementation of the

abstract method of super class

 return theName + " balance is " + accountBalance(

);

 }

} //NormalAccount

Here is an application to test class NormalAccount

class TestNormalAccount {

 public static void main(String args[]) {

 NormalAccount mike = new NormalAccount(" Mike's

");

 mike.deposit(100.0);

 System.out.println("Mike's balance = " +

mike.accountBalance());

 double obtained = mike.withdraw(20.0);

 System.out.println("Mike has withdrawn : " +

obtained);

 System.out.println(mike.statement());

 } //main

 }// TestNormalAccount

Interface

An interface is a set of methods such that if a class implements the

interface, it must provide definitions (implementations) for all

methods specified by the interface.

Below is an interface.

public interface AccountProtocol {

 public double accountBalance();

 public void deposit(final double money);

 public double withdraw(final double money);

}

Below is a class that implements the interface AccountProtocol.

public class SimpleAccount implements AccountProtocol {

 private double theBalance = 0.0d;

 public double accountBalance(){

 return theBalance;

 }

 public double withdraw(final double money){

 if (theBalance - money >= 0.0){

 theBalance = theBalance - money;

 return money;

 }

 else {

 return 0.0;

 }

 }

 public void deposit (final double money){

 theBalance = theBalance + money;

 }

 //method transfer may be passed an object implementing

AccoutProtocol

 public double transfer(AccountProtocol other, final

double money) {

 if (money > 0.0) {

 double obtained = other.withdraw(money);

 if (obtained != 0.0) {

 deposit(money);

 return money;

 }

 }

 return 0.0;

 }//transfer

}// end class

Follows is an application that tests the interface and the class

implementing it.

class TestSimpleAccount {

 public static void main (String args []) {

 SimpleAccount mike = new SimpleAccount();

 SimpleAccount corinna = new SimpleAccount();

 double obtained;

 System.out.println("Mike's balance = " +

mike.accountBalance());

 mike.deposit(100.0);

 System.out.println("Mike's balance = " +

mike.accountBalance());

 obtained = mike.withdraw(20.0);

 System.out.println("Mike has withdrawn : " +

obtained);

 System.out.println("Mike's balance = " +

mike.accountBalance());

 corinna.deposit(50.0);

 System.out.println("Corinna's balance = " +

corinna.accountBalance());

 obtained = 15.0;

 System.out.println("Transfering " + obtained + "

from Corinna's to Mike's ");

 mike.transfer(corinna, obtained);

 System.out.println("Mike's balance = " +

mike.accountBalance());

 System.out.println("Corinna's balance = " +

corinna.accountBalance());

 System.out.println();

 }

}

Classes: more details (from the text)

The this Parameter

• All instance variables are understood to have <the calling

object>. in front of them

• If an explicit name for the calling object is needed, the

keyword this can be used

– myInstanceVariable always means and is always

interchangeable with this.myInstanceVariable

• this must be used if a parameter or other local variable with

the same name is used in the method

– Otherwise, all instances of the variable name will be

interpreted as local

 int someVariable = this.someVariable
someVariable is local, this.someVariable is the instance’s variable

Testing Methods

• Each method should be tested in a program in which it is the

only untested program

– A program whose only purpose is to test a method is

called a driver program

• One method often invokes other methods, so one way to do

this is to first test all the methods invoked by that method,

and then test the method itself

– This is called bottom-up testing

• Sometimes it is necessary to test a method before another

method it depends on is finished or tested

– In this case, use a simplified version of the method,

called a stub, to return a value for testing

–

The Fundamental Rule for Testing Methods

• Every method should be tested in a program in which every

other method in the testing program has already been fully

tested and debugged

Information Hiding and Encapsulation

• Information hiding is the practice of separating how to use a class
from the details of its implementation

– Abstraction is another term used to express the concept of
discarding details in order to avoid information overload

• Encapsulation means that the data and methods of a class are
combined into a single unit (i.e., a class object), which hides the
implementation details

– Knowing the details is unnecessary because interaction with
the object occurs via a well-defined and simple interface

– In Java, hiding details is done by marking them private

Accessor and Mutator Methods
• Accessor methods (getters) allow the programmer to obtain

the value of an object's instance variables

– The data can be accessed but not changed

– The name of an accessor method typically starts with

the word get

• Mutator methods (setters) allow the programmer to change

the value of an object's instance variables in a controlled

manner

– Incoming data is typically tested and/or filtered

– The name of a mutator method typically starts with the

word set

PARAMETER PASSING

Pointers, references, memory addresses

int x; // variable declaration

Every variable (object) is assigned a memory location (address, reference in Java) in

RAM . x may be assigned, say, location 2.

RAM

0

1

x<->2

3

…

10000

Compiler constructs a symbol table to keep tracks of the addresses of variables.

Name Address

x 2

y 5

When we refer to x in our program, the compiler refers to (address) location 2.

x = 124; means 124 is assigned to location 2.

Content of x is an integer

A reference is a variable whose content is an address of some other variables or

objects. Suppose r is a reference and r contains 200

 RAM

0

1

2

3

…

200

10000

A class is a description of all objects that share the same member variables and

member methods. An object of a class is created with the keyword new. For example:

Account temp = new Account();

An object has physical existence (it occupies memory space, ie. RAM)

A class has no physical existence. A class is a muold used to create objects.

Objects of the same class have the same structure, but occupy difference memory

locations.

Objects are reference types.

Recall: actual parameters (actuals) are the parameters of the caller,

formal parameters (formals) are the parameters of the callee. In

call by reference, the actuals and the formals refer to the same

memory locations; thus changes to the formals apply as well to the

actuals. In call by value, when the subroutine is invoked a copy of

the formals are created, each occupying a memory location

different than that of the actuals, the values of the actuals are

copied into the formals.

In C, most parameters are passed by value with a few exceptions,

one of which is arrays which are passed by reference.

200 r

#include <stdio.h>

void add(int a[], int n);

void main(void)

{

 int i;

 int n = 2;

 int x[3];

 for(i = 0; i < 3; i++)

 x[i] = i;

 add(x, n);

 printf(" n = %i \n", n);

 for(i = 0; i < 3; i++)

 printf(" x[%i] = %i \n", i, x[i]);

}

void add(int a[], int n)

{

 for(int i = 0; i < 3; i ++)

 a[i]++;

 n = n + 5;

}

For the call “add(x, n)”, the array x is passed by reference

and the integer n is passed by value. Thus, x and a refer to the

same array. While the variable n in main is different from the

variable n in add.

The following is printed by main:
n = 2

x[0] = 1

x[1] = 2

x[2] = 3

In Java, parameters are always passed by value. If the parameter is

reference type, then the actual and formal refer to the same object

(because they contain the same value which is the address of the

object); thus this has the same effect as pass-by-reference.

import java.io.*;

class QueueNode {

 protected int element;

 protected QueueNode next;

 }

public class Parameter {

 protected static void change(QueueNode t, int n){

 t.element = 7;

 n = 9;

 }

 public static void main(String args[]) {

 int n = 3;

 QueueNode One = new QueueNode();

 One.element = 5;

 change(One, n);

 System.out.println(One.element);

 System.out.println(n);

 }

}

Output:

7

3

