
Chapter 9

Exception
Handling

Copyright © 2016 Pearson Inc. All
rights reserved.

Last modified

• 2015-10-02 by C Hoang

9-2 Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to Exception Handling

• Sometimes the best outcome can be when
nothing unusual happens

• However, the case where exceptional things
happen must also be prepared for
– Java exception handling facilities are used when

the invocation of a method may cause something
exceptional to occur

– Often the exception is some type of error
condition

9-3 Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to Exception Handling

• Java library software (or programmer-defined code)
provides a mechanism that signals when something
unusual happens

– This is called throwing an exception

• In another place in the program, the programmer
must provide code that deals with the exceptional
case

– This is called handling the exception

9-4 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

• The basic way of handling exceptions in Java consists of
the try-throw-catch trio

• The try block contains the code for the basic algorithm
– It tells what to do when everything goes smoothly

• It is called a try block because it "tries" to execute the
case where all goes as planned
– It can also contain code that throws an exception if something

unusual happens
try

{

 CodeThatMayThrowAnException

}

9-5 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

throw new

 ExceptionClassName(PossiblySomeArguments);

• When an exception is thrown, the execution of the
surrounding try block is stopped
– Normally, the flow of control is transferred to another portion of code

known as the catch block

• The value thrown is the argument to the throw operator, and
is always an object of some exception class
– The execution of a throw statement is called throwing an exception

9-6 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

• A throw statement is similar to a method call:
throw new ExceptionClassName(SomeString);

– In the above example, the object of class
ExceptionClassName is created using a string as its
argument

– This object, which is an argument to the throw operator,
is the exception object thrown

• Instead of calling a method, a throw statement calls
a catch block

9-7 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

• When an exception is thrown, the catch block
begins execution
– The catch block has one parameter
– The exception object thrown is plugged in for the catch

block parameter

• The execution of the catch block is called catching
the exception, or handling the exception
– Whenever an exception is thrown, it should ultimately be

handled (or caught) by some catch block

9-8 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

catch(Exception e)

{

 ExceptionHandlingCode

}

• A catch block looks like a method definition that has a
parameter of type Exception class
– It is not really a method definition, however

• A catch block is a separate piece of code that is
executed when a program encounters and executes a
throw statement in the preceding try block
– A catch block is often referred to as an exception handler
– It can have at most one parameter

9-9 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

catch(Exception e) { . . . }

• The identifier e in the above catch block heading is called
the catch block parameter

• The catch block parameter does two things:
1. It specifies the type of thrown exception object that the catch

block can catch (e.g., an Exception class object above)

2. It provides a name (for the thrown object that is caught) on which it
can operate in the catch block

– Note: The identifier e is often used by convention, but any non-
keyword identifier can be used

9-10 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

• When a try block is executed, two things can
happen:

1. No exception is thrown in the try block

– The code in the try block is executed to the end of the
block

– The catch block is skipped

– The execution continues with the code placed after the
catch block

9-11 Copyright © 2016 Pearson Inc. All rights reserved.

try-throw-catch Mechanism

2. An exception is thrown in the try block and
caught in the catch block
– The rest of the code in the try block is skipped

– Control is transferred to a following catch block
(in simple cases)

– The thrown object is plugged in for the catch
block parameter

– The code in the catch block is executed

– The code that follows that catch block is executed
(if any)

9-12 Copyright © 2016 Pearson Inc. All rights reserved.

Demo

• Get the java files from the text’s website

• getIntDemo.java

– handle getting correct input from user

– InputMismatchException

– what to do when expect integers but user enters,
say, characters

• BadNumberExceptionDemo.java

9-13 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Example

• In many cases your own code doesn’t throw
the exception, but instead it is thrown by an
existing Java library

• Example: Input an integer using nextInt()

– What if the user doesn’t enter an integer?

– The nextInt method throws an
InputMismatchException

9-14 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Handling with the Scanner Class

• If a user enters something other than a well-formed
int value, an InputMismatchException will
be thrown
– Unless this exception is caught, the program will end with

an error message
– If the exception is caught, the catch block can give code

for some alternative action, such as asking the user to
reenter the input

9-15 Copyright © 2016 Pearson Inc. All rights reserved.

The
InputMismatchException

• The InputMismatchException is in the
standard Java package java.util
– A program that refers to it must use an import

statement, such as the following:
import java.util.InputMismatchException;

• It is a descendent class of
RuntimeException

– Therefore, it is an unchecked exception and does not
have to be caught in a catch block or declared in a
throws clause

– However, catching it in a catch block is allowed,
and can sometimes be useful

9-16 Copyright © 2016 Pearson Inc. All rights reserved.

Tip: Exception Controlled Loops

• Sometimes it is better to simply loop through an action again when
an exception is thrown, as follows:

boolean done = false;

while (! done)

{

 try

 {

 CodeThatMayThrowAnException

 done = true;

 }

 catch (SomeExceptionClass e)

 {

 SomeMoreCode

 }

}

9-17 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Controlled Loop

9-18 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Classes

• There are more exception classes than just the single
class Exception
– There are more exception classes in the standard Java libraries
– New exception classes can be defined like any other class

• All predefined exception classes have the following
properties:
– There is a constructor that takes a single argument of type
String

– The class has an accessor method getMessage that can
recover the string given as an argument to the constructor
when the exception object was created

• All programmer-defined classes should have the same
properties

9-19 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Classes from Standard Packages

• Numerous predefined exception classes are included
in the standard packages that come with Java
– For example:

IOException

NoSuchMethodException

FileNotFoundException

– Many exception classes must be imported in order to use
them
import java.io.IOException;

9-20 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Classes from Standard Packages

• The predefined exception class Exception is the
root class for all exceptions

– Every exception class is a descendent class of the class
Exception

– Although the Exception class can be used directly in a
class or program, it is most often used to define a derived
class

– The class Exception is in the java.lang package, and
so requires no import statement

9-21 Copyright © 2016 Pearson Inc. All rights reserved.

Using the getMessage Method

. . . // method code

try

{

 . . .

 throw new Exception(StringArgument);

 . . .

}

catch(Exception e)

{

 String message = e.getMessage();

 System.out.println(message);

 System.exit(0);

} . . .

9-22 Copyright © 2016 Pearson Inc. All rights reserved.

Using the getMessage Method

• Every exception has a String instance variable that
contains some message
– This string typically identifies the reason for the exception

• In the previous example, StringArgument is an
argument to the Exception constructor

• This is the string used for the value of the string
instance variable of exception e
– Therefore, the method call e.getMessage() returns

this string

9-23 Copyright © 2016 Pearson Inc. All rights reserved.

Defining Exception Classes

• A throw statement can throw an exception object
of any exception class

• Instead of using a predefined class, exception classes
can be programmer-defined

– These can be tailored to carry the precise kinds of
information needed in the catch block

– A different type of exception can be defined to identify
each different exceptional situation

9-24 Copyright © 2016 Pearson Inc. All rights reserved.

Defining Exception Classes

• Every exception class to be defined must be a derived
class of some already defined exception class
– It can be a derived class of any exception class in the standard

Java libraries, or of any programmer defined exception class

• Constructors are the most important members to define
in an exception class
– They must behave appropriately with respect to the variables

and methods inherited from the base class
– Often, there are no other members, except those inherited

from the base class

• The following exception class performs these basic tasks
only

9-25 Copyright © 2016 Pearson Inc. All rights reserved.

A Programmer-Defined Exception Class

9-26 Copyright © 2016 Pearson Inc. All rights reserved.

Using our own Exception Class (1 of 3)

9-27 Copyright © 2016 Pearson Inc. All rights reserved.

Using our own Exception Class (2 of 3)

9-28 Copyright © 2016 Pearson Inc. All rights reserved.

Using our own Exception Class (3 of 3)

9-29 Copyright © 2016 Pearson Inc. All rights reserved.

Tip: An Exception Class Can Carry a
Message of Any Type: int Message

• An exception class constructor can be defined
that takes an argument of another type
– It would stores its value in an instance variable
– It would need to define accessor methods for this

instance variable

9-30 Copyright © 2016 Pearson Inc. All rights reserved.

An Exception Class with an int Message

9-31 Copyright © 2016 Pearson Inc. All rights reserved.

Exception Object Characteristics

• The two most important things about an
exception object are its type (i.e., exception
class) and the message it carries
– The message is sent along with the exception

object as an instance variable

– This message can be recovered with the accessor
method getMessage, so that the catch block
can use the message

9-32 Copyright © 2016 Pearson Inc. All rights reserved.

Programmer-Defined Exception Class Guidelines

• Exception classes may be programmer-defined, but every
such class must be a derived class of an already existing
exception class

• The class Exception can be used as the base class, unless
another exception class would be more suitable

• At least two constructors should be defined, sometimes more

• The exception class should allow for the fact that the method
getMessage is inherited

9-33 Copyright © 2016 Pearson Inc. All rights reserved.

Preserve getMessage

• For all predefined exception classes, getMessage
returns the string that is passed to its constructor as an
argument
– Or it will return a default string if no argument is used with the

constructor

• This behavior must be preserved in all programmer-
defined exception class
– A constructor must be included having a string parameter

whose body begins with a call to super
– The call to super must use the parameter as its argument
– A no-argument constructor must also be included whose body

begins with a call to super
– This call to super must use a default string as its argument

9-34 Copyright © 2016 Pearson Inc. All rights reserved.

Multiple catch Blocks

• A try block can potentially throw any number of
exception values, and they can be of differing types
– In any one execution of a try block, at most one

exception can be thrown (since a throw statement ends
the execution of the try block)

– However, different types of exception values can be
thrown on different executions of the try block

9-35 Copyright © 2016 Pearson Inc. All rights reserved.

Multiple catch Blocks

• Each catch block can only catch values of the
exception class type given in the catch block
heading

• Different types of exceptions can be caught by
placing more than one catch block after a try
block
– Any number of catch blocks can be included, but they

must be placed in the correct order

9-36 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Catch the More Specific Exception First

• When catching multiple exceptions, the order
of the catch blocks is important
– When an exception is thrown in a try block, the
catch blocks are examined in order

– The first one that matches the type of the
exception thrown is the one that is executed

9-37 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Catch the More Specific Exception First

catch (Exception e)

{ . . . }

catch (NegativeNumberException e)

{ . . . }

• Because a NegativeNumberException is a type of
Exception, all NegativeNumberExceptions will be
caught by the first catch block before ever reaching the
second block
– The catch block for NegativeNumberException will never be

used!

• For the correct ordering, simply reverse the two blocks

9-38 Copyright © 2016 Pearson Inc. All rights reserved.

Throwing an Exception in a Method

• Sometimes it makes sense to throw an exception in a method,
but not catch it in the same method
– Some programs that use a method should just end if an exception is

thrown, and other programs should do something else

– In such cases, the program using the method should enclose the
method invocation in a try block, and catch the exception in a
catch block that follows

• In this case, the method itself would not include try and
catch blocks
– However, it would have to include a throws clause

9-39 Copyright © 2016 Pearson Inc. All rights reserved.

Declaring Exceptions in a throws Clause

• If a method can throw an exception but does not
catch it, it must provide a warning
– This warning is called a throws clause

– The process of including an exception class in a throws
clause is called declaring the exception
throws AnException //throws clause

– The following states that an invocation of aMethod could
throw AnException
public void aMethod() throws AnException

9-40 Copyright © 2016 Pearson Inc. All rights reserved.

Declaring Exceptions in a throws Clause

• If a method can throw more than one type of
exception, then separate the exception types
by commas
public void aMethod() throws

 AnException, AnotherException

• If a method throws an exception and does not
catch it, then the method invocation ends
immediately

9-41 Copyright © 2016 Pearson Inc. All rights reserved.

The Catch or Declare Rule

• Most ordinary exceptions that might be thrown
within a method must be accounted for in one of
two ways:

1. The code that can throw an exception is placed within a
try block, and the possible exception is caught in a
catch block within the same method

2. The possible exception can be declared at the start of the
method definition by placing the exception class name in
a throws clause

9-42 Copyright © 2016 Pearson Inc. All rights reserved.

The Catch or Declare Rule

• The first technique handles an exception in a catch block
• The second technique is a way to shift the exception handling

responsibility to the method that invoked the exception
throwing method

• The invoking method must handle the exception, unless it too
uses the same technique to "pass the buck"

• Ultimately, every exception that is thrown should eventually
be caught by a catch block in some method that does not
just declare the exception class in a throws clause

9-43 Copyright © 2016 Pearson Inc. All rights reserved.

The Catch or Declare Rule

• In any one method, both techniques can be mixed
– Some exceptions may be caught, and others may be declared in a
throws clause

• However, these techniques must be used consistently with a
given exception
– If an exception is not declared, then it must be handled within the

method
– If an exception is declared, then the responsibility for handling it is

shifted to some other calling method
– Note that if a method definition encloses an invocation of a second

method, and the second method can throw an exception and does not
catch it, then the first method must catch or declare it

9-44 Copyright © 2016 Pearson Inc. All rights reserved.

Summary of exception propagation

• Suppose A calls B,

• B calls C,

• C throws an exception

• If B handles (catch) the exception

– all is good 

• If B does not handle the exception

– A should handle the exception

– If not, program crashes

9-45 Copyright © 2016 Pearson Inc. All rights reserved.

Checked and Unchecked Exceptions

• Exceptions that are subject to the catch or declare rule are
called checked exceptions
– The compiler checks to see if they are accounted for with either a

catch block or a throws clause

– The classes Throwable, Exception, and all descendants of the
class Exception are checked exceptions

• All other exceptions are unchecked exceptions

• The class Error and all its descendant classes are called
error classes
– Error classes are not subject to the Catch or Declare Rule

9-46 Copyright © 2016 Pearson Inc. All rights reserved.

Exceptions to the Catch or Declare Rule

• Checked exceptions must follow the Catch or
Declare Rule
– Programs in which these exceptions can be thrown

will not compile until they are handled properly

• Unchecked exceptions are exempt from the
Catch or Declare Rule
– Programs in which these exceptions are thrown

simply need to be corrected, as they result from
some sort of error

9-47 Copyright © 2016 Pearson Inc. All rights reserved.

Hierarchy of Throwable Objects

9-48 Copyright © 2016 Pearson Inc. All rights reserved.

The throws Clause in Derived Classes

• When a method in a derived class is
overridden, it should have the same exception
classes listed in its throws clause that it had
in the base class
– Or it should have a subset of them

• A derived class may not add any exceptions to
the throws clause
– But it can delete some

9-49 Copyright © 2016 Pearson Inc. All rights reserved.

What Happens If an Exception is Never Caught?

• If every method up to and including the main method
simply includes a throws clause for an exception, that
exception may be thrown but never caught
– In a GUI program (i.e., a program with a windowing interface),

nothing happens - but the user may be left in an unexplained
situation, and the program may be no longer be reliable

– In non-GUI programs, this causes the program to terminate with
an error message giving the name of the exception class

• Every well-written program should eventually catch
every exception by a catch block in some method

9-50 Copyright © 2016 Pearson Inc. All rights reserved.

Example – Retrieving a High Score
Without Exceptions (1 of 2)

• No exceptions, return -1 if there is no score

9-51 Copyright © 2016 Pearson Inc. All rights reserved.

public class HighScoreNoException

{

 private int score = 0;

 private boolean scoreSet = false;

 public HighScoreNoException()

 {

 score = 0;

 scoreSet = false;

 }

 public void setScore(int newScore)

 {

 score = newScore;

 scoreSet = true;

 }

Example – Retrieving a High Score
Without Exceptions (2 of 2)

9-52 Copyright © 2016 Pearson Inc. All rights reserved.

public int getScore()

 {

 if (!scoreSet)

 return -1;

 else

 return score;

 }

 // Short test program

 public static void main(String[] args)

 {

 HighScoreNoException highscore = new HighScoreNoException();

 System.out.println(highscore.getScore());

 highscore.setScore(100);

 System.out.println(highscore.getScore());

 }

}

Problems if negative

scores are allowed!

Example – Retrieving a High Score
with Exceptions (1 of 4)

• Problem solved with exceptions

9-53 Copyright © 2016 Pearson Inc. All rights reserved.

public class ScoreNotSetException extends Exception

{

 public ScoreNotSetException()

 {

 super("Score not set");

 }

 public ScoreNotSetException(String message)

 {

 super(message);

 }

}

Example – Retrieving a High Score
with Exceptions (2 of 4)

9-54 Copyright © 2016 Pearson Inc. All rights reserved.

public class HighScoreException

{

 private int score = 0;

 private boolean scoreSet = false;

 public HighScoreException()

 {

 score = 0;

 scoreSet = false;

 }

 public void setScore(int newScore)

 {

 score = newScore;

 scoreSet = true;

 }

Example – Retrieving a High Score
with Exceptions (3 of 4)

9-55 Copyright © 2016 Pearson Inc. All rights reserved.

 public int getScore() throws ScoreNotSetException

 {

 if (!scoreSet)

 throw new ScoreNotSetException();

 else

 return score;

 }

 // Short test program

 public static void main(String[] args)

 {

 HighScoreException highscore = new HighScoreException();

 try

 {

 System.out.println

 (highscore.getScore());

 }

Example – Retrieving a High Score
with Exceptions (4 of 4)

9-56 Copyright © 2016 Pearson Inc. All rights reserved.

catch (ScoreNotSetException e)

 {

 System.out.println

 (e.getMessage());

 }

 highscore.setScore(100);

 try

 {

 System.out.println

 (highscore.getScore());

 }

 catch (ScoreNotSetException e)

 {

 System.out.println

 (e.getMessage());

 }

 }

}

When to Use Exceptions

• Exceptions should be reserved for situations where a
method encounters an unusual or unexpected case
that cannot be handled easily in some other way

• When exception handling must be used, here are
some basic guidelines:
– Include throw statements and list the exception classes in

a throws clause within a method definition
– Place the try and catch blocks in a different method

9-57 Copyright © 2016 Pearson Inc. All rights reserved.

When to Use Exceptions

• Here is an example of a method from which the
exception originates:

public void someMethod()

 throws SomeException

{

 . . .

 throw new

 SomeException(SomeArgument);

 . . .

}

9-58 Copyright © 2016 Pearson Inc. All rights reserved.

When to Use Exceptions

• When someMethod is used by an otherMethod, the
otherMethod must then deal with the exception:
public void otherMethod()

{

 try

 {

 someMethod();

 . . .

 }

 catch (SomeException e)

 {

 CodeToHandleException

 }

 . . .

}

9-59 Copyright © 2016 Pearson Inc. All rights reserved.

Event Driven Programming

• Exception handling is an example of a programming
methodology known as event-driven programming

• When using event-driven programming, objects are
defined so that they send events to other objects
that handle the events

– An event is an object also

– Sending an event is called firing an event

9-60 Copyright © 2016 Pearson Inc. All rights reserved.

Event Driven Programming

• In exception handling, the event objects are
the exception objects

– They are fired (thrown) by an object when the
object invokes a method that throws the
exception

– An exception event is sent to a catch block,
where it is handled

9-61 Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Nested try-catch Blocks

• It is possible to place a try block and its following catch
blocks inside a larger try block, or inside a larger catch
block
– If a set of try-catch blocks are placed inside a larger catch block,

different names must be used for the catch block parameters in the
inner and outer blocks, just like any other set of nested blocks

– If a set of try-catch blocks are placed inside a larger try block,
and an exception is thrown in the inner try block that is not caught,
then the exception is thrown to the outer try block for processing,
and may be caught in one of its catch blocks

9-62 Copyright © 2016 Pearson Inc. All rights reserved.

The finally Block
• The finally block contains code to be executed

whether or not an exception is thrown in a try block
– If it is used, a finally block is placed after a try block and

its following catch blocks
try

{ . . . }

catch(ExceptionClass1 e)

{ . . . }

 . . .

catch(ExceptionClassN e)

{ . . . }

finally

{

 CodeToBeExecutedInAllCases

}

9-63 Copyright © 2016 Pearson Inc. All rights reserved.

The finally Block

• If the try-catch-finally blocks are inside a method
definition, there are three possibilities when the code is
run:

1. The try block runs to the end, no exception is thrown, and the
finally block is executed

2. An exception is thrown in the try block, caught in one of the
catch blocks, and the finally block is executed

3. An exception is thrown in the try block, there is no matching
catch block in the method, the finally block is executed, and
then the method invocation ends and the exception object is
thrown to the enclosing method

9-64 Copyright © 2016 Pearson Inc. All rights reserved.

Rethrowing an Exception

• A catch block can contain code that throws
an exception
– Sometimes it is useful to catch an exception and

then, depending on the string produced by
getMessage (or perhaps something else), throw
the same or a different exception for handling
further up the chain of exception handling blocks

9-65 Copyright © 2016 Pearson Inc. All rights reserved.

ArrayIndexOutOfBoundsException

• An ArrayIndexOutOfBoundsException is thrown
whenever a program attempts to use an array index that is
out of bounds
– This normally causes the program to end

• Like all other descendents of the class
RuntimeException, it is an unchecked exception
– There is no requirement to handle it

• When this exception is thrown, it is an indication that the
program contains an error
– Instead of attempting to handle the exception, the program should

simply be fixed

9-66 Copyright © 2016 Pearson Inc. All rights reserved.

The AssertionError Class

• When a program contains an assertion check, and
the assertion check fails, an object of the class
AssertionError is thrown
– This causes the program to end with an error message

• The class AssertionError is derived from the
class Error, and therefore is an unchecked
exception
– In order to prevent the program from ending, it could be

handled, but this is not required

9-67 Copyright © 2016 Pearson Inc. All rights reserved.

Assertions

• An assertion is a statement in the
JavaTM programming language that enables
you to test your assumptions about your
program.

• For example, if you write a method that
calculates the speed of a particle, you might
assert that the calculated speed is less than
the speed of light.

9-68 Copyright © 2016 Pearson Inc. All rights reserved.

• Each assertion contains a boolean expression
that you believe will be true when the
assertion executes.

• If it is not true, the system will throw an error.
• By verifying that the boolean expression is indeed true, the

assertion confirms your assumptions about the behavior of
your program, increasing your confidence that the program is
free of errors.

• For more detail, see the Oracle’s documentation

9-69 Copyright © 2016 Pearson Inc. All rights reserved.

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

assertion I

• assert Expression1 ;

• where Expression1 is a boolean expression.

– When the system runs the assertion, it
evaluates Expression1 and if it is false throws
an AssertionError with no detail message.

9-70 Copyright © 2016 Pearson Inc. All rights reserved.

http://docs.oracle.com/javase/7/docs/api/java/lang/AssertionError.html

• assert Expression1 : Expression2 ; where:

• Expression1 is a boolean expression.

• Expression2 is an expression that has a value.
(It cannot be an invocation of a method that is
declared void.)

• Use this version of the assert statement to provide a detail message for
the AssertionError. The system passes the value of Expression2 to the
appropriate AssertionError constructor, which uses the string representation of the
value as the error's detail message.

9-71 Copyright © 2016 Pearson Inc. All rights reserved.

When to use an assertion

• if (i % 3 == 0) {

• ... }

• else if (i % 3 == 1) {

• ... } else {

• // We know (i % 3 == 2)

• ... }

9-72 Copyright © 2016 Pearson Inc. All rights reserved.

• if (i % 3 == 0) {

• ... }

• else if (i % 3 == 1) {

• ... } else {

• assert i % 3 == 2 : i;

• ... }

You should use an assertion

whenever you would have

written a comment that asserts

an invariant

• switch(suit) {

• case Suit.CLUBS:

• ...

• break;

• case Suit.DIAMONDS:

• ...

• break;

• case Suit.HEARTS:

• ...

• break;

• case Suit.SPADES:

• ...
 break;

• default:

• assert false : suit;

• }

9-73 Copyright © 2016 Pearson Inc. All rights reserved.

Compiling Files That Use Assertions

• You must compile using -source

• javac -source 1.7 MyClass.java

• Then you must enable assertion when you run
the program

• java –ea MyClass

9-74 Copyright © 2016 Pearson Inc. All rights reserved.

Compiling with assertions in
Eclipse

• Run -> Run Configurations -> Arguments

• then in the VM argument window, enter "-ea“

• to enable assertions

9-75 Copyright © 2016 Pearson Inc. All rights reserved.

Compiling with assertions in
Eclipse

9-76 Copyright © 2016 Pearson Inc. All rights reserved.

