
Chapter 13

Interfaces and Inner Classes

2

Interfaces
• An interface is something like an extreme case of an

abstract class
– However, an interface is not a class
– It is a type that can be satisfied by any class that implements the

interface
• The syntax for defining an interface is similar to that of

defining a class
– Except the word interface is used in place of class

• An interface specifies a set of methods that any class
that implements the interface must have
– It contains method headings and constant definitions only
– It contains no instance variables nor any complete method

definitions

3

Interfaces

• An interface serves a function similar to a base
class, though it is not a base class
– Some languages allow one class to be derived from

two or more different base classes
– This multiple inheritance is not allowed in Java
– Instead, Java's way of approximating multiple

inheritance is through interfaces

4

Interfaces
• An interface and all of its method headings should be

declared public
– They cannot be given private, protected, or package access

• When a class implements an interface, it must make all
the methods in the interface public

• Because an interface is a type, a method may be written
with a parameter of an interface type
– That parameter will accept as an argument any class that

implements the interface

5

The Ordered Interface

6

Interfaces
• To implement an interface, a concrete class must do

two things:
1. It must include the phrase

implements Interface_Name
at the start of the class definition
– If more than one interface is implemented, each is listed,

separated by commas
2. The class must implement all the method headings

listed in the definition(s) of the interface(s)
• Note the use of Object as the parameter type

in the following examples

7

Implementation of an Interface

8

Implementation of an Interface

9

Abstract Classes Implementing
Interfaces

• Abstract classes may implement one or
more interfaces
– Any method headings given in the interface

that are not given definitions are made into
abstract methods

• A concrete class must give definitions for
all the method headings given in the
abstract class and the interface

10

An Abstract Class Implementing an
Interface

11

Derived Interfaces

• Like classes, an interface may be derived from a
base interface
– This is called extending the interface
– The derived interface must include the phrase

extends BaseInterfaceName

• A concrete class that implements a derived
interface must have definitions for any methods
in the derived interface as well as any methods
in the base interface

12

Extending an Interface

13

Pitfall: Interface Semantics Are Not
Enforced

• When a class implements an interface, the compiler and
run-time system check the syntax of the interface and its
implementation
– However, neither checks that the body of an interface is

consistent with its intended meaning
• Required semantics for an interface are normally added

to the documentation for an interface
– It then becomes the responsibility of each programmer

implementing the interface to follow the semantics
• If the method body does not satisfy the specified

semantics, then software written for classes that
implement the interface may not work correctly

14

The Comparable Interface
• Chapter 6 discussed the Selection Sort algorithm, and

examined a method for sorting a partially filled array of
type double into increasing order

• This code could be modified to sort into decreasing
order, or to sort integers or strings instead
– Each of these methods would be essentially the same, but

making each modification would be a nuisance
– The only difference would be the types of values being sorted,

and the definition of the ordering
• Using the Comparable interface could provide a single

sorting method that covers all these cases

15

The Comparable Interface
• The Comparable interface is in the java.lang

package, and so is automatically available to
any program

• It has only the following method heading that
must be implemented:
public int compareTo(Object other);

• It is the programmer's responsibility to follow the
semantics of the Comparable interface when
implementing it

16

The Comparable Interface
Semantics

• The method compareTo must return
– A negative number if the calling object "comes before"

the parameter other
– A zero if the calling object "equals" the parameter

other
– A positive number if the calling object "comes after"

the parameter other
• If the parameter other is not of the same type

as the class being defined, then a
ClassCastException should be thrown

17

The Comparable Interface
Semantics

• Almost any reasonable notion of "comes
before" is acceptable
– In particular, all of the standard less-than

relations on numbers and lexicographic
ordering on strings are suitable

• The relationship "comes after" is just the
reverse of "comes before"

18

The Comparable Interface
Semantics

• Other orderings may be considered, as long as they are
a total ordering

• Such an ordering must satisfy the following rules:
– (Irreflexivity) For no object o does o come before o
– (Trichotomy) For any two object o1 and o2, one and only one of

the following holds true: o1 comes before o2, o1 comes after
o2, or o1 equals o2

– (Transitivity) If o1 comes before o2 and o2 comes before o3,
then o1 comes before o3

• The "equals" of the compareTo method semantics
should coincide with the equals method if possible, but
this is not absolutely required

19

Using the Comparable
Interface

• The following example reworks the SelectionSort
class from Chapter 6

• The new version, GeneralizedSelectionSort,
includes a method that can sort any partially filled array
whose base type implements the Comparable interface
– It contains appropriate indexOfSmallest and interchange

methods as well
• Note: Both the Double and String classes implement

the Comparable interface
– Interfaces apply to classes only
– A primitive type (e.g., double) cannot implement an interface

20

GeneralizedSelectionSort
class: sort Method

21

GeneralizedSelectionSort
class: sort Method

22

GeneralizedSelectionSort
class: interchange Method

23

Sorting Arrays of Comparable

24

Sorting Arrays of Comparable

25

Sorting Arrays of Comparable

26

Defined Constants in Interfaces

• An interface can contain defined constants in
addition to or instead of method headings
– Any variables defined in an interface must be public,

static, and final
– Because this is understood, Java allows these

modifiers to be omitted
• Any class that implements the interface has

access to these defined constants

27

Pitfall: Inconsistent Interfaces
• In Java, a class can have only one base class

– This prevents any inconsistencies arising from
different definitions having the same method heading

• In addition, a class may implement any number
of interfaces
– Since interfaces do not have method bodies, the

above problem cannot arise
– However, there are other types of inconsistencies that

can arise

28

Pitfall: Inconsistent Interfaces
• When a class implements two interfaces:

– One type of inconsistency will occur if the interfaces
have constants with the same name, but with different
values

– Another type of inconsistency will occur if the
interfaces contain methods with the same name but
different return types

• If a class definition implements two inconsistent
interfaces, then that is an error, and the class
definition is illegal

29

The Serializable Interface

• An extreme but commonly used example
of an interface is the Serializable
interface
– It has no method headings and no defined

constants: It is completely empty
– It is used merely as a type tag that indicates

to the system that it may implement file I/O in
a particular way

30

The Cloneable Interface

• The Cloneable interface is another
unusual example of a Java interface
– It does not contain method headings or

defined constants
– It is used to indicate how the method clone

(inherited from the Object class) should be
used and redefined

31

The Cloneable Interface

• The method Object.clone() does a bit-
by-bit copy of the object's data in storage

• If the data is all primitive type data or data of
immutable class types (such as String),
then this is adequate
– This is the simple case

• The following is an example of a simple
class that has no instance variables of a
mutable class type, and no specified base
class
– So the base class is Object

32

Implementation of the Method
clone: Simple Case

33

The Cloneable Interface

• If the data in the object to be cloned includes
instance variables whose type is a mutable class,
then the simple implementation of clone would
cause a privacy leak

• When implementing the Cloneable interface for a
class like this:
– First invoke the clone method of the base class Object

(or whatever the base class is)
– Then reset the values of any new instance variables

whose types are mutable class types
– This is done by making copies of the instance variables by

invoking their clone methods

34

The Cloneable Interface

• Note that this will work properly only if
the Cloneable interface is
implemented properly for the classes
to which the instance variables belong
– And for the classes to which any of the

instance variables of the above classes
belong, and so on and so forth

• The following shows an example

35

Implementation of the Method
clone: Harder Case

36

Simple Uses of Inner Classes

• Inner classes are classes defined within
other classes
– The class that includes the inner class is

called the outer class
– There is no particular location where the

definition of the inner class (or classes) must
be place within the outer class

– Placing it first or last, however, will guarantee
that it is easy to find

37

Simple Uses of Inner Classes
• An inner class definition is a member of the

outer class in the same way that the instance
variables and methods of the outer class are
members
– An inner class is local to the outer class definition
– The name of an inner class may be reused for

something else outside the outer class definition
– If the inner class is private, then the inner class

cannot be accessed by name outside the definition of
the outer class

38

Simple Uses of Inner Classes

• There are two main advantages to inner
classes
– They can make the outer class more self-

contained since they are defined inside a class
– Both of their methods have access to each

other's private methods and instance variables
• Using an inner class as a helping class is

one of the most useful applications of inner
classes
– If used as a helping class, an inner class should

be marked private

39

Tip: Inner and Outer Classes
Have Access to Each Other's

Private Members
• Within the definition of a method of an inner class:

– It is legal to reference a private instance variable of the outer
class

– It is legal to invoke a private method of the outer class
• Within the definition of a method of the outer class

– It is legal to reference a private instance variable of the inner
class on an object of the inner class

– It is legal to invoke a (nonstatic) method of the inner class as
long as an object of the inner class is used as a calling object

• Within the definition of the inner or outer classes, the
modifiers public and private are equivalent

40

Class with an Inner Class

41

Class with an Inner Class

42

Class with an Inner Class

43

The .class File for an Inner
Class

• Compiling any class in Java produces a .class
file named ClassName.class

• Compiling a class with one (or more) inner
classes causes both (or more) classes to be
compiled, and produces two (or more) .class
files
– Such as ClassName.class and

ClassName$InnerClassName.class

44

Static Inner Classes
• A normal inner class has a connection between

its objects and the outer class object that
created the inner class object
– This allows an inner class definition to reference an

instance variable, or invoke a method of the outer
class

• There are certain situations, however, when an
inner class must be static
– If an object of the inner class is created within a static

method of the outer class
– If the inner class must have static members

45

Static Inner Classes
• Since a static inner class has no connection to

an object of the outer class, within an inner class
method
– Instance variables of the outer class cannot be

referenced
– Nonstatic methods of the outer class cannot be

invoked
• To invoke a static method or to name a static

variable of a static inner class within the outer
class, preface each with the name of the inner
class and a dot

46

Public Inner Classes
• If an inner class is marked public, then it

can be used outside of the outer class
• In the case of a nonstatic inner class, it must

be created using an object of the outer class
BankAccount account = new BankAccount();
BankAccount.Money amount =

account.new Money("41.99");
– Note that the prefix account. must come before

new
– The new object amount can now invoke methods

from the inner class, but only from the inner class

47

Public Inner Classes

• In the case of a static inner class, the
procedure is similar to, but simpler than,
that for nonstatic inner classes

OuterClass.InnerClass innerObject =
new OuterClass.InnerClass();

– Note that all of the following are acceptable
innerObject.nonstaticMethod();
innerObject.staticMethod();
OuterClass.InnerClass.staticMethod();

48

Tip: Referring to a Method of the
Outer Class

• If a method is invoked in an inner class
– If the inner class has no such method, then it is

assumed to be an invocation of the method of that
name in the outer class

– If both the inner and outer class have a method with
the same name, then it is assumed to be an
invocation of the method in the inner class

– If both the inner and outer class have a method with
the same name, and the intent is to invoke the
method in the outer class, then the following
invocation must be used:

OuterClassName .this.methodName()

49

Nesting Inner Classes

• It is legal to nest inner classes within inner
classes
– The rules are the same as before, but the names get

longer
– Given class A, which has public inner class B, which

has public inner class C, then the following is valid:
A aObject = new A();
A.B bObject = aObject.new B();
A.B.C cObject = bObject.new C();

50

Inner Classes and Inheritance
• Given an OuterClass that has an
InnerClass
– Any DerivedClass of OuterClass will

automatically have InnerClass as an inner class
– In this case, the DerivedClass cannot override the
InnerClass

• An outer class can be a derived class
• An inner class can be a derived class also

51

Anonymous Classes
• If an object is to be created, but there is no need to

name the object's class, then an anonymous class
definition can be used
– The class definition is embedded inside the expression with the
new operator

• Anonymous classes are sometimes used when they are
to be assigned to a variable of another type
– The other type must be such that an object of the anonymous

class is also an object of the other type
– The other type is usually a Java interface

52

Anonymous Classes

53

Anonymous Classes

54

Anonymous Classes

	Chapter 13
	Interfaces
	Interfaces
	Interfaces
	The Ordered Interface
	Interfaces
	Implementation of an Interface
	Implementation of an Interface
	Abstract Classes Implementing Interfaces
	An Abstract Class Implementing an Interface
	Derived Interfaces
	Extending an Interface
	Pitfall: Interface Semantics Are Not Enforced
	The Comparable Interface
	The Comparable Interface
	The Comparable Interface Semantics
	The Comparable Interface Semantics
	The Comparable Interface Semantics
	Using the Comparable Interface
	GeneralizedSelectionSort class: sort Method
	GeneralizedSelectionSort class: sort Method
	GeneralizedSelectionSort class: interchange Method
	Sorting Arrays of Comparable
	Sorting Arrays of Comparable
	Sorting Arrays of Comparable
	Defined Constants in Interfaces
	Pitfall: Inconsistent Interfaces
	Pitfall: Inconsistent Interfaces
	The Serializable Interface
	The Cloneable Interface
	The Cloneable Interface
	Implementation of the Method clone: Simple Case
	The Cloneable Interface
	The Cloneable Interface
	Implementation of the Method clone: Harder Case
	Simple Uses of Inner Classes
	Simple Uses of Inner Classes
	Simple Uses of Inner Classes
	Tip: Inner and Outer Classes Have Access to Each Other's Private Members
	Class with an Inner Class
	Class with an Inner Class
	Class with an Inner Class
	The .class File for an Inner Class
	Static Inner Classes
	Static Inner Classes
	Public Inner Classes
	Public Inner Classes
	Tip: Referring to a Method of the Outer Class
	Nesting Inner Classes
	Inner Classes and Inheritance
	Anonymous Classes
	Anonymous Classes
	Anonymous Classes
	Anonymous Classes

