Chapter 13

Interfaces and Inner Classes

Interfaces

« An interface is something like an extreme case of an
abstract class
— However, an interface is not a class

— Itis a type that can be satisfied by any class that implements the
Interface

* The syntax for defining an interface Is similar to that of
defining a class
— Except the word interface is used in place of class

* An interface specifies a set of methods that any class
that implements the interface must have
— It contains method headings and constant definitions only

— It contains no instance variables nor any complete method
definitions

Interfaces

 An Interface serves a function similar to a base
class, though it is not a base class

— Some languages allow one class to be derived from
two or more different base classes

— This multiple inheritance is not allowed in Java

— Instead, Java's way of approximating multiple
Inheritance Is through interfaces

Interfaces

* An interface and all of its method headings should be
declared public

— They cannot be given private, protected, or package access

 When a class implements an interface, it must make all
the methods in the interface public

 Because an interface is a type, a method may be written
with a parameter of an interface type

— That parameter will accept as an argument any class that
Implements the interface

The Ordered Interface

Display 13.1 The Ordered Interface

Do not forget the semicolons at

1 public interface Ordered the end of the method headings.
2 A

3 public boolean precedes(Object other);

4 r,.'"F.".-'f

5 For objects of the class ol and o2,

6 ol.follows(02) == o2.preceded(ol).

7 ""',.-"

8 public boolean follows(Object other);

9 }

Neither the compiler nor the run-time system will do anything to ensure that this comment is
satisfied. It is only advisory to the programmer implementing the interface.

Interfaces

To implement an interface, a concrete class must do
two things:

1. It mustinclude the phrase
implements Interface Name

at the start of the class definition

— If more than one interface is implemented, each is listed,
separated by commas

2. The class must implement all the method headings
listed in the definition(s) of the interface(s)

Note the use of Object as the parameter type
In the following examples

Implementation of an Interface

Display 13.2 Implementation of an Interface

W 00 =] o L B o k2

o okn B R

public class OrderedHourlyEmployee

{

extends HourlyEmployee implements Ordered

public boolean precedes(Object other) /lthough getClass works better than
{ instanceof for defining equals
if (other == null) instanceof works better here. However,
return false: either will do for the points being made here.

else if (!(other instanceof HourlyEmployee))
return false;
glse
{
OrderedHourlyEmployee otherOrderedHourlyEmployee =
(OrderedHourlyEmployee)other;
return (getPay() < otherOrderedHourlyEmployee.getPay());

Implementation of an Interface

Display 13.2 Implementation of an Interface (continued)

17 public boolean follows(Object other)

18 {

19 if (other == null)

20 return false;

21 else if (!(other instanceof OrderedHourlyEmployee))

22 return false;

23 else

24 {

25 OrderedHourlyEmployee otherOrderedHourlyEmployee =
26 (OrderedHourlyEmployee)other;

27 return (otherOrderedHourlyEmployee.precedes(this));
28 }

29 }

30}

Abstract Classes Implementing
Interfaces

e Abstract classes may implement one or
more interfaces
— Any method headings given in the interface

that are not given definitions are made Into
abstract methods

* A concrete class must give definitions for
all the method headings given in the
abstract class and the interface

An Abstract Class Implementing an

IlntArfAan~n

Display 13.3 An Abstract Class Implementing an Interface <

(Tl T e W B - . ¥ I

el il el =l el il el el =
0O =~ on o) M &

=
[i=]

Pt
=

public abstract class MyAbstractClass implements Ordered

{
int number;
char grade;
public boolean precedes(Object other)
{
if (other == null)
return false;
else if (!(other instanceof HourlyEmployee))
return false;
else
{
MyAbstractClass otherOfMyAbstractClass =
(MyAbstractClass)other;
return (this.number < otherOfMyAbstractClass.number);
}
}
public abstract boolean follows(Object other);
}

Derived Interfaces

* Like classes, an interface may be derived from a
base interface

— This is called extending the interface
— The derived interface must include the phrase
extends BaselnterfaceName
* A concrete class that implements a derived
Interface must have definitions for any methods

In the derived interface as well as any methods
In the base interface

11

Extending an Interface

Display 13.4, Extending an Interface

I = A TR ¥ B S TN S

public interface ShowablyOrdered extends Ordered

{
lllu"l':\."r'«.'
Outputs an object of the class that precedes the calling object.
s/
public void showOneWhoPrecedes();
H

Neither the compiler nor the run-time system will do
anything to ensure that this comment is satisfied.

A (concrete) class that implements the Showab1yOrdered interface must have a definition for
the method showOnelWhoPrecedes and also have definitions for the methods precedes and
follows given in the Ordered interface.

12

Pitfall: Interface Semantics Are Not
Enforced

* When a class implements an interface, the compiler and
run-time system check the syntax of the interface and its
Implementation

— However, neither checks that the body of an interface is
consistent with its intended meaning

 Required semantics for an interface are normally added
to the documentation for an interface

— It then becomes the responsibility of each programmer
Implementing the interface to follow the semantics

 |If the method body does not satisfy the specified
semantics, then software written for classes that
Implement the interface may not work correctly

13

The Comparable Interface

e Chapter 6 discussed the Selection Sort algorithm, and
examined a method for sorting a partially filled array of
type double into increasing order

e This code could be modified to sort into decreasing
order, or to sort integers or strings instead

— Each of these methods would be essentially the same, but
making each modification would be a nuisance

— The only difference would be the types of values being sorted,
and the definition of the ordering

* Using the Comparable interface could provide a single
sorting method that covers all these cases

14

The Comparable Interface

« The Comparable interface is in the Java. lang

package, and so Is automatically available to
any program

It has only the following method heading that
must be implemented:

public 1nt compareTo(Object other);

 |tis the programmer's responsibility to follow the
semantics of the Comparable interface when

Implementing it

15

The Comparable Interface
Semantics

 The method compareTo must return

— A negative number if the calling object "comes before"
the parameter other

— A zero if the calling object "equals" the parameter
other

— A positive number if the calling object "comes after"
the parameter other

 |f the parameter other Is not of the same type

as the class being defined, then a
ClassCastException should be thrown

16

The Comparable Interface
Semantics

* Almost any reasonable notion of "comes
before" Is acceptable
— In particular, all of the standard less-than

relations on numbers and lexicographic
ordering on strings are suitable

* The relationship "comes after" is just the
reverse of "comes before"

17

The Comparable Interface
Semantics

« Other orderings may be considered, as long as they are
a total ordering

e Such an ordering must satisfy the following rules:
— (Irreflexivity) For no object o does o come before o

— (Trichotomy) For any two object o1 and 02, one and only one of
the following holds true: o1 comes before 02, o1 comes after
02, or ol equals 02

— (Transitivity) If o1 comes before 02 and 02 comes before 03,
then o1 comes before 03

e The "equals" of the compareTo method semantics
should coincide with the equals method if possible, but

this is not absolutely required

18

Using the Comparable
Interface

The following example reworks the SelectionSort
class from Chapter 6
The new version, General1zedSelectionSort,

Includes a method that can sort any partially filled array
whose base type implements the Comparable interface

— It contains appropriate indexOfSmal lest and interchange
methods as well

Note: Both the Double and String classes implement
the Comparable interface

— Interfaces apply to classes only
— A primitive type (e.g., double) cannot implement an interface

19

Generali1zedSelectionSort
class: sort Method

Display 13.5 Sorting Method for Array of Comparable (Part 1 of 2)

1 public class GeneralizedSelectionSort

2

3 Sk

il Precondition: numberUsed <= a.length;

5 The first numberUsed indexed variables have wvalues.

6 Action: Sorts a so that a[©, a[l], ... , a[numberUsed — 1] are i

7 increasing order by the compareTo method.

9 public static void sort(Comparable[] a, int numberUsed)
10 {
11 int index, indexOfNextSmallest;
12 for (index = ©; index < numberUsed - 1, index++)
13 {//Place the correct value in a[index]:
14 index0OfNextSmallest = indexOfSmallest(index, a, numberUsed);
15 interchange (index, indexOfNextSmallest, a);
16 [/al0], a[l],..., a[index] are correctly ordered and these are
17 //the smallest of the original array elements. The remaining
18 //positions contain the rest of the original array elements.
19 }
20 }

20

Generali1zedSelectionSort

class: sort Method

Display 13.5 Sorting Method for Array of Comparable (Part1of 2) (continued)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

-_l'll -~ .rl..

Returns the index of the smallest wvalue among
a[startIndex], al[startIndex+1], ... al[numberUsed — 1]

private stotic int indexOfSmallest(int startIndex,

{

Comparable[] a, int numberUsed)

a[startIndex];
startIndex;

Comparable min
int index0fMin
int index;

for (index = startIndex + 1; index < numberUsed; index++)

if (a[index].compareTo(min) < @)//if a[index] is less than min

{

min = al[index];

indexOfMin = index;

//min is smallest of a[startIndex] through a[index]
}

return indexOfMin:

21

Generali1zedSelectionSort
class: Interchange Method

Display 13.5 Sorting Method for Array of Comparable (Part 2 of 2)

. Sk

Precondition: i and j are legal indices for the array a.
Postcondition: Values of a[i] and a[j] have been interchanged.
..l...ll,l'
private stotic void interchange(int i, int j, Comparable[] a)
{

Comparable temp;

temp = ali];

alil = a[jl;

alj] = temp; //original value of a[i]
h

22

Sorting Arrays of Comparable

Display 13.6 Sorting Arrays of Comparable (Part 1 of 2)

1

2 Demonstrates sorting arrays for classes that

3 implement the Comparable interface.

4 */

5 pﬁblic class ComparableDemo The classes Double and String do
6 implement the Comparable interface.
7 public static void main(String[] args)

8 {

9 Double[] d = new Double[10];

10 for (int 1 = 0; 1 < d.length; i++)

11 d[i] = new Double(d.length - 1);

12 System.out.println("Before sorting:");

13 int 1i;

14 for (i = 0; 1 < d.length; i++)

15 System.out.print(d[i].doubleValue() + ", ");

16 System.out.println();

17 GeneralizedSelectionSort.sort(d, d.length);

18 System.out.println("After sorting:");

19 for (1 = 0; 1 < d.length; i++)

20 System.out.print(d[i].doubleValue() + ", ");

21 System.out.println();

Sorting Arrays of Comparable

Display 13.6 Sorting Arrays of Comparable (Part 2 of 2)

22
23
24
25
26

27
28
29
30
31
32

String[] a = new String[10];

{][E'] = “dDg";
all] = "cat";
al2] = "cornish game hen";

int numberUsed = 3;

System.out.println("Before sorting:");

for (1 = 0:; 1 < numberUsed; i++)
System.out.printCal[i] + ", ");

System.out.println();

GeneralizedSelectionSort.sort(a, numberUsed);

24

Sorting Arrays of Comparable

Display 13.6 Sorting Arrays of Comparable (Part z of 2) (continued)

33 System.out.println("After sorting:");
34 for (1 = 0: 1 < numberUsed: 1++)

35 System.out.print{ali]l + ", ");

36 System.out.println();

37 }

38 }

SAMPLE DIALOGUE

Before Sorting

10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0,
After sorting:

1., 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
Before sorting;

dog, cat, cornish game hen,

After sorting:

cat, cornish game hen, dog,

Defined Constants In Interfaces

 An Interface can contain defined constants In
addition to or instead of method headings

— Any variables defined in an interface must be public,
static, and final

— Because this is understood, Java allows these
modifiers to be omitted

* Any class that implements the interface has
access to these defined constants

26

Pitfall: Inconsistent Interfaces

e |n Java, a class can have only one base class

— This prevents any inconsistencies arising from
different definitions having the same method heading

 |n addition, a class may implement any number
of interfaces

— Since Interfaces do not have method bodies, the
above problem cannot arise

— However, there are other types of inconsistencies that
can arise

27

Pitfall: Inconsistent Interfaces

 When a class implements two interfaces:

— One type of inconsistency will occur if the interfaces
have constants with the same name, but with different
values

— Another type of inconsistency will occur if the
Interfaces contain methods with the same name but
different return types

 |If a class definition implements two inconsistent

Interfaces, then that is an error, and the class

definition is illegal

28

The Serrali1zable Interface

* An extreme but commonly used example
of an interface Is the Seriralizable

Interface

— It has no method headings and no defined
constants: It is completely empty

— It Is used merely as a type tag that indicates
to the system that it may implement file I/O in
a particular way

29

The Cloneable Interface

e The Cloneable interface Is another
unusual example of a Java interface

— It does not contain method headings or
defined constants

— It 1s used to Iindicate how the method clone
(inherited from the Object class) should be

used and redefined

30

The

Cloneable Interface

 The method Object.clone() does a bit-
by-bit copy of the object's data in storage

 If the data is all primitive type data or data of
Immutable class types (such as String),

then this is adequate

— This
e The fo
class t

mutab
class

IS the simple case

lowing Is an example of a simple
nat has no instance variables of a

e class type, and no specified base

— So the base class is Object

31

Implementation of the Method
clone: Simple Case

Display 13.7 Implementation of the Method clone (Simple Case)

1 public class YourCloneableClass implements Cloneable

2 { W,

3 pri: i;f(Orrectfy if each nStanpe. ...

4 € ype or of an imm -© Variable js of a
5 . “1able type Jike 5ty
6 public Object clone() 7
7 {

B try

9 {

10 return super.clone();//Invocation of clone

11 //in the base class Object

12 }

13 catch(CloneNotSupportedException e)

14 {//This should not happen.

15 return null; //To keep the compiler happy.

16 }

17 }

18

19

20

21}

32

The Cloneable Interface

 |f the data in the object to be cloned includes

Instance variables whose type is a mutable class,
then the simple implementation of clone would

cause a privacy leak
 When implementing the Cloneabl e interface for a

class like this:
— First invoke the clone method of the base class Object
(or whatever the base class is)

— Then reset the values of any new instance variables
whose types are mutable class types

— This is done by making copies of the instance variables by
invoking their clone methods

33

The Cloneable Interface

* Note that this will work properly only If
the Cloneable interface is

iImplemented properly for the classes
to which the instance variables belong

— And for the classes to which any of the
Instance variables of the above classes

belong, and so on and so forth
* The following shows an example

34

Implementation of the Method

clone: Harder Case

Display 13.8 Implementation of the Method clone (Harder Case)

O 0 ~NO WV B W

10

public class YourCloneableClass2 implements Cloneable

private DataClass someVariable;
DataClass is a mutable class. Any other

instance variables are each of a primitive
. type or of an immutable type like String.
public Object clone()

{
try
{
YourCloneableClass2 copy =
(YourCloneableClass2)super.clone();
copy.someVariable = (DataClass)someVariable.clone();
return copy;
}
catch(CloneNotSupportedException e)
{//This should not happen.
return null; //To keep the compiler happy.
}
} If the clone method return type is DataClass rather

than Object, then this type cast is not needed.

The class DataClass must also properly implement
the Cloneable interface including defining the clone
method as we are describing.

35

Simple Uses of Inner Classes

e |nner classes are classes defined within
other classes

— The class that includes the inner class iIs
called the outer class

— There is no particular location where the
definition of the inner class (or classes) must
be place within the outer class

— Placing it first or last, however, will guarantee
that it is easy to find

36

Simple Uses of Inner Classes

* An inner class definition is a member of the
outer class in the same way that the instance
variables and methods of the outer class are

members
— An inner class is local to the outer class definition

— The name of an inner class may be reused for
something else outside the outer class definition

— If the inner class is private, then the inner class

cannot be accessed by name outside the definition of
the outer class

37

Simple Uses of Inner Classes

 There are two main advantages to inner
classes
— They can make the outer class more self-
contained since they are defined inside a class

— Both of their methods have access to each
other's private methods and instance variables

* Using an inner class as a helping class is
one of the most useful applications of inner
classes

— If used as a helping class, an inner class should
be marked private

38

Tip: Inner and Outer Classes
Have Access to Each Other's
Private Members

Within the definition of a method of an inner class:

— ltis legal to reference a private instance variable of the outer
class

— Itis legal to invoke a private method of the outer class

Within the definition of a method of the outer class

— ltis legal to reference a private instance variable of the inner
class on an object of the inner class

— ltis legal to invoke a (nonstatic) method of the inner class as
long as an object of the inner class is used as a calling object

Within the definition of the inner or outer classes, the
modifiers public and private are equivalent

39

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part 1 of 2)

1 public class BankAccount
2 {
3 private class Money-s The modifier private in this line should
4 { not be changed to public
5 private long dollars;. However, the modifiers public and
6 private int cents; private inside the inner class Money
can be changed to anything else and it
7 public Money(String stringAmount) yoy|d have no effect on the class
8 { BankAccount.
9 abortOnNull(stringAmount) ;
10 int length = stringAmount.length();
11 dollars = Long.parselLong(
12 stringAmount.substring(®, length - 3));
13 cents = Integer.parselnt(
14 stringAmount.substring(length - 2, length)};
15 }
16 public String getAmount()
17 {
18 if (cents > 9)
19 return (dollars + "." + cents);
20 else
21 return (dollars + ".0" + cents);
22 }

40

Class with an Inner Class

Display 12.9 Class with an Inner Class (Part10of 2) (continued)

23 public void addIn(Money secondAmount)

24 {

25 abortOnNull(secondAmount):

26 int newCents = (cents + secondAmount.cents)%100,

27 long carry = (cents + secondAmount.cents)/100;

28 cents = newCents;

29 dollars = dollars + secondAmount.dollars + carry;

30 }

31 private void abortOnNull(Object o)

32 {

33 if (0 == null)

34 {

35 System.out.println("Unexpected null argument."};

36 System.exit(0);

37 H L) . L
The definition of the inner class ends here, but the definition of

38 ‘j-//— T M TR e e | P PRy T 4 R L D
39 } the outer class continues in Part 2 of this display.

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part z of 2)

40

41
42
43
44

45
46
47
48

49
50
51
532

33
54
35
36
37
58

private Money balance;: To invoke a nonstatic method of the inner class
outside of the inner class, you need to create an
object of the inner class.

public BankAccount()

{
balance = new Money("§.08");
¥
public String getB This invocation of the inner class method
1 getAmount () would be allowed even if
return balance.getAmount(); - themethod getAmount() were marked
} as private.

public void makeDeposit(String depositAmount)

{
balance.addIn(new Money(depositAmount));

public void closeAccount() Notice that the outer class has access to the

{ _.,rﬂ,ﬂ;ﬂn~—~*"” private instance variables of the inner class.

balance.dollars = 0;
balance.cents = 0;

This class would normally have more methods, but we have only
included the methods we need to illustrate the points covered here.

42

The .class File for an Inner
Class

 Compiling any class in Java produces a .class
file named ClassName.class

 Compiling a class with one (or more) inner
classes causes both (or more) classes to be
compiled, and produces two (or more) .class
files

— Such as ClassName.class and
ClassName$InnerClassName.class

43

Static Inner Classes

* A normal inner class has a connection between
its objects and the outer class object that
created the inner class object

— This allows an inner class definition to reference an

Instance variable, or invoke a method of the outer
class

* There are certain situations, however, when an
Inner class must be static

— If an object of the inner class is created within a static
method of the outer class

— If the Inner class must have static members

44

Static Inner Classes

* Since a static inner class has no connection to
an object of the outer class, within an inner class
method

— Instance variables of the outer class cannot be
referenced

— Nonstatic methods of the outer class cannot be
Invoked
e To invoke a static method or to name a static
variable of a static inner class within the outer
class, preface each with the name of the inner
class and a dot

45

Public Inner Classes

 If an inner class is marked public, then it
can be used outside of the outer class

* |n the case of a nonstatic inner class, it must
be created using an object of the outer class
BankAccount account = new BankAccount();
BankAccount.Money amount =
account.new Money(''41.99");
— Note that the prefix account. must come before
new
— The new object amount can now invoke methods
from the inner class, but only from the inner class

46

Public Inner Classes

e |n the case of a static inner class, the
procedure Is similar to, but simpler than,
that for nonstatic inner classes

OuterClass.InnerClass 1nnerObject =
new OuterClass.InnerClass();

— Note that all of the following are acceptable

innerObject.nonstaticMethod();
innerObject.staticMethod();
OuterClass. InnerClass.staticMethod();

47

Tip: Referring to a Method of the

QOuter Class

If a method Is invoked Iin an inner class

— If the inner class has no such method, then it is
assumed to be an invocation of the method of that
name In the outer class

— If both the inner and outer class have a method with
the same name, then it is assumed to be an
Invocation of the method in the inner class

— |If both the inner and outer class have a method with
the same name, and the intent iIs to invoke the
method in the outer class, then the following
Invocation must be used:

OuterClassName.this.methodName()

48

Nesting Inner Classes

 |tis legal to nest inner classes within inner
classes

— The rules are the same as before, but the names get
longer

— Given class A, which has public inner class B, which
has public inner class C, then the following is valid:
A aObject = new AQ;
A.B bObject = aObject.new B(Q);
A.B.C cObject = bObject.new C();

49

Inner Classes and Inheritance

e Given an OuterClass that has an
InnerClass

— Any DerivedClass of OuterClass will
automatically have InnerClass as an inner class

— In this case, the Deri1vedClass cannot override the
InnerClass

e An outer class can be a derived class
e An Inner class can be a derived class also

50

Anonymous Classes

« |If an object is to be created, but there is no need to
name the object's class, then an anonymous class
definition can be used

— The class definition is embedded inside the expression with the
new operator

 Anonymous classes are sometimes used when they are

to be assigned to a variable of another type

— The other type must be such that an object of the anonymous
class is also an object of the other type

— The other type is usually a Java interface

51

Anonymous Classes

Display 13.11 Anonymous Classes (Part 1 of 2)

This is just a toy example to demonstrate

1 public class AnonymousClassDemo the Java syntax for anonymous classes.
2 1
3 public static void main(String[] args)
4 {
5 NumberCarrier anObject =
6 new NumberCarrier()
7 {
8 private int number;
9 public void setNumber(int wvalue)
10 {
11 number = value;
12 }
13 public int getNumber()
14 {
15 return number;

=

=] O

b
L

52

A _ _ /S
Display 13.11 Anonymous Classes (Part 1 of 2)

18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

37
38
39
40

41

NumberCarrier anotherObject =
new NumberCarrier()

{
private int number;
public void setMNumber(int value)
{
number = 2*value;
E
public int getNumber()
{
return number;
}
};

anObject.setNumber(42);
anotherObject.setNumber(42);
showNumber CanObject);

showNumber CanotherObject);
System.out.println("End of program.”);

public static void showNumber(NumberCarrier o)

{
System.out.println(o.getNumber());

}
This is still the file

AnonymousClassDemo

Ljava.

53

Anonymous Classes

Display 13.11 Anonymous Classes (Part 2 of 2)

SAMPLE DIALOGUE

42
84
End of program.

This is the file

1 public interface NumberCarrier

P | NumberCarrier. java.
3 public void setNumber(int value);

4 public int getNumber();

5 1

54

	Chapter 13
	Interfaces
	Interfaces
	Interfaces
	The Ordered Interface
	Interfaces
	Implementation of an Interface
	Implementation of an Interface
	Abstract Classes Implementing Interfaces
	An Abstract Class Implementing an Interface
	Derived Interfaces
	Extending an Interface
	Pitfall: Interface Semantics Are Not Enforced
	The Comparable Interface
	The Comparable Interface
	The Comparable Interface Semantics
	The Comparable Interface Semantics
	The Comparable Interface Semantics
	Using the Comparable Interface
	GeneralizedSelectionSort class: sort Method
	GeneralizedSelectionSort class: sort Method
	GeneralizedSelectionSort class: interchange Method
	Sorting Arrays of Comparable
	Sorting Arrays of Comparable
	Sorting Arrays of Comparable
	Defined Constants in Interfaces
	Pitfall: Inconsistent Interfaces
	Pitfall: Inconsistent Interfaces
	The Serializable Interface
	The Cloneable Interface
	The Cloneable Interface
	Implementation of the Method clone: Simple Case
	The Cloneable Interface
	The Cloneable Interface
	Implementation of the Method clone: Harder Case
	Simple Uses of Inner Classes
	Simple Uses of Inner Classes
	Simple Uses of Inner Classes
	Tip: Inner and Outer Classes Have Access to Each Other's Private Members
	Class with an Inner Class
	Class with an Inner Class
	Class with an Inner Class
	The .class File for an Inner Class
	Static Inner Classes
	Static Inner Classes
	Public Inner Classes
	Public Inner Classes
	Tip: Referring to a Method of the Outer Class
	Nesting Inner Classes
	Inner Classes and Inheritance
	Anonymous Classes
	Anonymous Classes
	Anonymous Classes
	Anonymous Classes

