
Chapter 13

Interfaces and Inner Classes
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Interfaces
• An interface is something like an extreme case of an 

abstract class
– However, an interface is not a class
– It is a type that can be satisfied by any class that implements the 

interface
• The syntax for defining an interface is similar to that of 

defining a class
– Except the word interface is used in place of class

• An interface specifies a set of methods that any class 
that implements the interface must have
– It contains method headings and constant definitions only
– It contains no instance variables nor any complete method 

definitions
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Interfaces

• An interface serves a function similar to a base 
class, though it is not a base class
– Some languages allow one class to be derived from 

two or more different base classes
– This multiple inheritance is not allowed in Java
– Instead, Java's way of approximating multiple 

inheritance is through interfaces
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Interfaces
• An interface and all of its method headings should be 

declared public
– They cannot be given private, protected, or package access

• When a class implements an interface, it must make all 
the methods in the interface public

• Because an interface is a type, a method may be written 
with a parameter of an interface type
– That parameter will accept as an argument any class that 

implements the interface
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The Ordered Interface
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Interfaces
• To implement an interface, a concrete class must do 

two things:
1. It must include the phrase

implements Interface_Name
at the start of the class definition
– If more than one interface is implemented, each is listed, 

separated by commas
2. The class must implement all the method headings 

listed in the definition(s) of the interface(s)
• Note the use of Object as the parameter type 

in the following examples 
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Implementation of an Interface
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Implementation of an Interface
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Abstract Classes Implementing 
Interfaces

• Abstract classes may implement one or 
more interfaces
– Any method headings given in the interface 

that are not given definitions are made into 
abstract methods

• A concrete class must give definitions for 
all the method headings given in the 
abstract class and the interface
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An Abstract Class Implementing an 
Interface
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Derived Interfaces

• Like classes, an interface may be derived from a 
base interface
– This is called extending the interface
– The derived interface must include the phrase

extends BaseInterfaceName

• A concrete class that implements a derived 
interface must have definitions for any methods 
in the derived interface as well as any methods 
in the base interface
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Extending an Interface
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Pitfall:  Interface Semantics Are Not 
Enforced

• When a class implements an interface, the compiler and 
run-time system check the syntax of the interface and its 
implementation
– However, neither checks that the body of an interface is 

consistent with its intended meaning
• Required semantics for an interface are normally added 

to the documentation for an interface
– It then becomes the responsibility of each programmer 

implementing the interface to follow the semantics
• If the method body does not satisfy the specified 

semantics, then software written for classes that 
implement the interface may not work correctly
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The Comparable Interface
• Chapter 6 discussed the Selection Sort algorithm, and 

examined a method for sorting a partially filled array of 
type double into increasing order

• This code could be modified to sort into decreasing 
order, or to sort integers or strings instead
– Each of these methods would be essentially the same, but 

making each modification would be a nuisance
– The only difference would be the types of values being sorted, 

and the definition of the ordering
• Using the Comparable interface could provide a single 

sorting method that covers all these cases
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The Comparable Interface
• The Comparable interface is in the java.lang 

package, and so is automatically available to  
any program

• It has only the following method heading that 
must be implemented:
public int compareTo(Object other);

• It is the programmer's responsibility to follow the 
semantics of the Comparable interface when 
implementing it
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The Comparable Interface 
Semantics

• The method compareTo must return
– A negative number if the calling object "comes before" 

the parameter other
– A zero if the calling object "equals" the parameter 

other
– A positive number if the calling object "comes after" 

the parameter other
• If the parameter other is not of the same type 

as the class being defined, then a 
ClassCastException should be thrown
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The Comparable Interface 
Semantics

• Almost any reasonable notion of "comes 
before" is acceptable
– In particular, all of the standard less-than 

relations on numbers and lexicographic 
ordering on strings are suitable

• The relationship "comes after" is just the 
reverse of "comes before"
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The Comparable Interface 
Semantics

• Other orderings may be considered, as long as they are 
a total ordering

• Such an ordering must satisfy the following rules:
– (Irreflexivity) For no object o does o come before o
– (Trichotomy) For any two object o1 and o2, one and only one of 

the following holds true: o1 comes before o2, o1 comes after 
o2, or o1 equals o2

– (Transitivity) If o1 comes before o2 and o2 comes before o3, 
then o1 comes before o3

• The "equals" of the compareTo method semantics 
should coincide with the equals method if possible, but 
this is not absolutely required
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Using the Comparable 
Interface

• The following example reworks the SelectionSort 
class from Chapter 6

• The new version, GeneralizedSelectionSort, 
includes a method that can sort any partially filled array 
whose base type implements the Comparable interface
– It contains appropriate indexOfSmallest and interchange 

methods as well
• Note:  Both the Double and String classes implement 

the Comparable interface
– Interfaces apply to classes only
– A primitive type (e.g., double) cannot implement an interface
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GeneralizedSelectionSort 
class:  sort Method
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GeneralizedSelectionSort 
class:  sort Method
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GeneralizedSelectionSort 
class:  interchange Method
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Sorting Arrays of Comparable
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Sorting Arrays of Comparable
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Sorting Arrays of Comparable
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Defined Constants in Interfaces

• An interface can contain defined constants in 
addition to or instead of method headings
– Any variables defined in an interface must be public, 

static, and final
– Because this is understood, Java allows these 

modifiers to be omitted
• Any class that implements the interface has 

access to these defined constants
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Pitfall: Inconsistent Interfaces
• In Java, a class can have only one base class

– This prevents any inconsistencies arising from 
different definitions having the same method heading

• In addition, a class may implement any number 
of interfaces
– Since interfaces do not have method bodies, the 

above problem cannot arise
– However, there are other types of inconsistencies that 

can arise
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Pitfall: Inconsistent Interfaces
• When a class implements two interfaces:

– One type of inconsistency will occur if the interfaces 
have constants with the same name, but with different 
values

– Another type of inconsistency will occur if the 
interfaces contain methods with the same name but 
different return types

• If a class definition implements two inconsistent 
interfaces, then that is an error, and the class 
definition is illegal
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The Serializable Interface

• An extreme but commonly used example 
of an interface is the Serializable 
interface
– It has no method headings and no defined 

constants: It is completely empty
– It is used merely as a type tag that indicates 

to the system that it may implement file I/O in 
a particular way
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The Cloneable Interface

• The Cloneable interface is another 
unusual example of a Java interface
– It does not contain method headings or 

defined constants
– It is used to indicate how the method clone 

(inherited from the Object class) should be 
used and redefined
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The Cloneable Interface

• The method Object.clone() does a bit- 
by-bit copy of the object's data in storage

• If the data is all primitive type data or data of 
immutable class types (such as String), 
then this is adequate
– This is the simple case

• The following is an example of a simple 
class that has no instance variables of a 
mutable class type, and no specified base 
class
– So the base class is Object
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Implementation of the Method 
clone: Simple Case
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The Cloneable Interface

• If the data in the object to be cloned includes 
instance variables whose type is a mutable class, 
then the simple implementation of clone would 
cause a privacy leak

• When implementing the Cloneable interface for a 
class like this:
– First invoke the clone method of the base class Object 

(or whatever the base class is)
– Then reset the values of any new instance variables 

whose types are mutable class types
– This is done by making copies of the instance variables by 

invoking their clone methods



34

The Cloneable Interface

• Note that this will work properly only if 
the Cloneable interface is 
implemented properly for the classes 
to which the instance variables belong
– And for the classes to which any of the 

instance variables of the above classes 
belong, and so on and so forth

• The following shows an example
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Implementation of the Method 
clone: Harder Case
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Simple Uses of Inner Classes

• Inner classes are classes defined within 
other classes
– The class that includes the inner class is 

called the outer class
– There is no particular location where the  

definition of the inner class (or classes) must 
be place within the outer class

– Placing it first or last, however, will guarantee 
that it is easy to find
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Simple Uses of Inner Classes
• An inner class definition is a member of the 

outer class in the same way that the instance 
variables and methods of the outer class are 
members
– An inner class is local to the outer class definition
– The name of an inner class may be reused for 

something else outside the outer class definition
– If the inner class is private, then the inner class 

cannot be accessed by name outside the definition of 
the outer class
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Simple Uses of Inner Classes

• There are two main advantages to inner 
classes
– They can make the outer class more self- 

contained since they are defined inside a class
– Both of their methods have access to each 

other's private methods and instance variables
• Using an inner class as a helping class is 

one of the most useful applications of inner 
classes
– If used as a helping class, an inner class should 

be marked private
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Tip:  Inner and Outer Classes 
Have Access to Each Other's 

Private Members
• Within the definition of a method of an inner class:

– It is legal to reference a private instance variable of the outer 
class

– It is legal to invoke a private method of the outer class
• Within the definition of a method of the outer class

– It is legal to reference a private instance variable of the inner 
class on an object of the inner class

– It is legal to invoke a (nonstatic) method of the inner class as 
long as an object of the inner class is used as a calling object

• Within the definition of the inner or outer classes, the 
modifiers public and private are equivalent
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Class with an Inner Class
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Class with an Inner Class
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Class with an Inner Class
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The .class File for an Inner 
Class

• Compiling any class in Java produces a .class 
file named ClassName.class

• Compiling a class with one (or more) inner 
classes causes both (or more) classes to be 
compiled, and produces two (or more) .class 
files
– Such as ClassName.class and 

ClassName$InnerClassName.class
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Static Inner Classes
• A normal inner class has a connection between 

its objects and the outer class object that 
created the inner class object
– This allows an inner class definition to reference an 

instance variable, or invoke a method of the outer 
class

• There are certain situations, however, when an 
inner class must be static
– If an object of the inner class is created within a static 

method of the outer class
– If the inner class must have static members
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Static Inner Classes
• Since a static inner class has no connection to 

an object of the outer class, within an inner class 
method
– Instance variables of the outer class cannot be 

referenced
– Nonstatic methods of the outer class cannot be 

invoked
• To invoke a static method or to name a static 

variable of a static inner class within the outer 
class, preface each with the name of the inner 
class and a dot
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Public Inner Classes
• If an inner class is marked public, then it 

can be used outside of the outer class
• In the case of a nonstatic inner class, it must 

be created using an object of the outer class
BankAccount account = new BankAccount();
BankAccount.Money amount = 

account.new Money("41.99");
– Note that the prefix account. must come before 

new
– The new object amount can now invoke methods 

from the inner class, but only from the inner class
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Public Inner Classes

• In the case of a static inner class, the 
procedure is similar to, but simpler than, 
that for nonstatic inner classes

OuterClass.InnerClass innerObject = 
new OuterClass.InnerClass();

– Note that all of the following are acceptable
innerObject.nonstaticMethod();
innerObject.staticMethod();
OuterClass.InnerClass.staticMethod();
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Tip:  Referring to a Method of the 
Outer Class

• If a method is invoked in an inner class
– If the inner class has no such method, then it is 

assumed to be an invocation of the method of that 
name in the outer class

– If both the inner and outer class have a method with 
the same name, then it is assumed to be an 
invocation of the method in the inner class

– If both the inner and outer class have a method with 
the same name, and the intent is to invoke the 
method in the outer class, then the following 
invocation must be used:

OuterClassName .this.methodName()
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Nesting Inner Classes

• It is legal to nest inner classes within inner 
classes
– The rules are the same as before, but the names get 

longer
– Given class A, which has public inner class B, which 

has public inner class C, then the following is valid:
A aObject = new A();
A.B bObject = aObject.new B();
A.B.C cObject = bObject.new C();
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Inner Classes and Inheritance
• Given an OuterClass that has an 
InnerClass
– Any DerivedClass of OuterClass will 

automatically have InnerClass as an inner class
– In this case, the DerivedClass cannot override the 
InnerClass

• An outer class can be a derived class
• An inner class can be a derived class also
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Anonymous Classes
• If an object is to be created, but there is no need to 

name the object's class, then an anonymous class 
definition can be used
– The class definition is embedded inside the expression with the 
new operator

• Anonymous classes are sometimes used when they are 
to be assigned to a variable of another type
– The other type must be such that an object of the anonymous 

class is also an object of the other type
– The other type is usually a Java interface
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Anonymous Classes
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Anonymous Classes
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Anonymous Classes
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