Operating-System Structures

Operating-System Structures

e An environment for the execution of programs and services to programs and
users
e Providing functions that are helpful to the user:

— User interface

— Program execution

— I/0O operations
File-system manipulation
— Communications

— Error detection

Operating System Services (Cont.)

e Another set of OS functions exists to ensure the efficient operation of the
system itself via resource-sharing

— Resource allocation

— Protection and security

— Protection involves ensuring that all access to system resources is con-
trolled

— Security of the system from outsiders requires user authentication extends
to defending external I/O devices from invalid access attempts

A View of Operating System Services

user and other system programs

GUI ‘ batch ‘ command line

user interfaces

system calls
program l{e] file o resource .
execution operations systems gemnunicatisn allocation gegaunting
error pro;en(glon
detection _ security
services

operating system

hardware

User Operating System Interface - CLI

e CLI or command interpreter allows direct command entry
e Sometimes implemented in kernel, sometimes by systems program
e Sometimes multiple flavors implemented — shells

e Primarily fetches a command from user and executes it
e Sometimes commands built-in, sometimes just names of programs
o If the latter, adding new features doesn’ t require shell modification

Bourne Shell Command Interpreter

Default

50 J

Info Close Execute Bookmarks

—l Default Default
PBG-Mac-Pro:~ pbg% w
15:24 up 56 mins, 2 users, lood averages: 1.51 1.53 1.65

USER TTY FROM LOGINE IDLE WHAT

pbg console - 14:34 58 -

pbg =008 - 15:85 - W

PBG-Mac-Pro:~ pbg} iostat 5

disk® diskl diski@ cpu load averoge

KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s wus sy id 1m 5m 15m
33.75 343 11.30 64.31 14 ©.88 39.67 @ ©0.82 11 5 84 1.51 1.53 1.65
5.27 320 1.e5 9.0¢ @ 0.00 .00 9@ Q.98 4 294 1.39 1.51 1.65
4,28 329 1.37 .06 @ 0.00 .09 0@ Q.96 5 392 1.44 1.51 1.65

AC

PBG-Mac-Pro:~ pbg% 1s

Applications Music WebEx

Applications (Parallels) Pando Packoges config.log

Desktop Pictures getsmartdota. txt

Documents Public imp

Downloads Sites log

Dropbox Thumbs . db panda-dist

Library Virtual Machines prob.txt

Movies Volumes scripts

PBG-Mac-Pro:~ pbg% pwd

FUsers/pbg

PEG-Mac-Pro:~ pbg% ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=2.257 ms

64 bytes from 192.168.1.1: icmp_seg=1 ttl=b4 time=1.262 ms

AC

--- 192 .168.1.1 ping statistics ---

2 pockets transmitted, 2 packets received, @.0% packet loss
round-trip minfavg/max/stddev = 1.262/1.760/2.257/0.408 ms

PBG-Mac-Pro:~ pba$ []

System Calls

e Programming interface to the services provided by the OS Typically written
in a high-level language (C or C++)

o Mostly accessed by programs via a high-level Application Programming Inter-
face (API) rather than direct system call use

e Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine (JVM)

System Calls

e System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

4

Application Programming Interface

o Typically, application developers design programs according to an application
programming interface (API).

o The API specifies a set of functions available to an application programmer,
including the parameters that are passed to each function and the return values
the programmer can expect.

e A programmer accesses an API via a library of code provided by the operating
system. In the case of UNIX and Linux for programs written in the C language,
the library is called libc.

Application Programming Interface

e« Why would an application programmer prefer programming according to an
API rather than invoking actual system calls?

— Program portability

— Actual system calls can often be more detailed and difficult to work with
than the APL

— A strong correlation between a function in the API and its associated
system call within the kernel.

System Call Implementation

e Typically, a number associated with each system call System-call interface
maintains a table indexed according to these numbers

e The system call interface invokes the intended system call in OS kernel and
returns the status of the system call and any return values The caller needs to
know nothing about how the system call is implemented

e Most details of OS interface hidden from programmer by API
Managed by run-time support library (set of functions built into libraries in-
cluded with compiler)

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)
| | | | | |
return function parameters
value name

A program that uses the read () function must include theunistd.h header
file, as this file defines the ssize -t and size-t data types (among other
things). The parameters passed to read() are as follows:

¢ int fd—the file descriptor to be read

® void *buf—a buffer where the data will be read into

® size-t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
. Implementation
i » of open ()
. system call
return

Types of System Calls

e Process control

— create process, terminate process

— end, abort

— load, execute

— get process attributes, set process attributes

— wait for time

— wait event, signal event

— allocate and free memory

— Dump memory if error

— Debugger for determining bugs, single step execution

— Locks for managing access to shared data between processes

Types of System Calls (Cont.)

e File management

— create file, delete file
open, close file

read, write, reposition

— get and set file attributes

Types of System Calls (Cont.)

e Protection

— Control access to resources
— Get and set permissions
— Allow and deny user access

Standard C Library Example

o C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |-

return 0;
}

user

mode ¥

E—— standard C library
kermnel

mode

write ()

write ()
system call

C Libraries

Library Functionality

<stdio.h> This library contains all the standard input and output operation functions: 10
macros and 41 functions. The most popular functions are printf and scanf.

<stdlib.h> This is a standard library in C that is mainly used for general-purpose
programming. It contains the memory allocation and deallocation functions that
perform dynamic activities.

<unistd.h> This library provides the standard interface for the POSIX API.

<sys/types.h> This library contains standard derived data types, which are helpful in system-
level programming.

<signal.h> This library handles the signal activities in an operating system.

<time.h> This library provides support for time and date activities in a standard manner.

<sys/stat.h> This library determines the file system status and activity.

<fentl.h> This library is a part of the POSIX API that manipulates files, such as changing
permissions.

<sys/ipc.h> This library deals with three major core tasks that include interprocess
communication activity (i.e., message queues, semaphores, and shared memory).

<sys/msg.h> This library works with the <sys/ipc.h=> library to deal with IPC activity.

<semaphore.h>

This library performs the semaphore activity in an operating system. It is also a
part of the POSIX library.

<sys/shm.h> This library performs shared memory activities.
<sys/wait.h> This library places a process into a waiting state.
<stdargs.h> This library handles the variable argument activity that takes input directly from

the command-line.

System Calls and 1/O Operations for Files

creat

o This system call creates a new empty file with a system call. It is available in
the fentlh library, which is a file handling library for Unix and Linux.

e The return type for this function is an integer. If file creation is successful, it
returns a non-negative integer. If the creation of the file fails, it returns -1.

e The following shows the syntax. int creat(char *filename, mode_t

mode) ;

e The first parameter in the creat function is the name of a file.

creat contd...

e The second parameter, mode, deals with the permissions of the file. The per-
mission modes are different from normal Linux file system permissions. There

are various modes available for this flag, but the following are the most com-
mon modes.

e O_RDONLY: If you set this flag mode to the creat function, the file has
read-only permission.

e O_WRONLY: This mode gives write permissions.
e O_RDWR: This mode gives both read and write permissions.
e O_EXCL: This flag mode prevents the creation of a file if it already exists.

e« O_APPEND: This mode appends the content to existing file data without
overriding it.

e« O_CREAT: This flag mode creates a file if it does not exist.

o If you want to use multiple modes at the same time, you can use the bitwise
OR operator.

Example: create.c

open

e The open system call function opens a file and can perform read and write
operations based on the mode set to the function. An open system call can
also create a file.

o If the specified filename is not available, then it automatically creates a new
file with the given name. The return type of this function is an integer.

o If the file opens successfully, it returns a positive integer value; otherwise, it
returns -1.

e The following shows the syntax.
int open(const char *filepath, int flags, ...);

e The first parameter deals with the absolute path of a file that you want to
open.

e The flags that are passed as a second argument are O_RDONLY, O__
WRONLY, O__RDWR, and so forth.

o Example: open.c

close

e This system call closes the file descriptor that was created to open, create, or
read the contents in a file. The return type of this function is an integer.

« If the file descriptor is closed successfully, it returns 0; otherwise, it returns -1.
e The following shows the syntax.

int close(int file_descriptor);
« file_descriptor is an integer value that identifies the open file in a process.

o Example: close.c

read

This function system call reads the content of a file that was indicated by a file
descriptor. The return type of this function is an integer. It returns -1 if an error
occurs or when any signal interrupt occurs during a read operation. A successful
read of a file returns the number of bytes read during the operation.

The following shows the syntax.

size_t read (int file_descriptor, void* buffer, size_t size);

o file_descriptor is a unique integer value that identifies the open file in a process.
e The buffer argument reads the file data.

e size is the third argument indicates the size of the buffer that you want to
read from the file.

Example:read.c

write

e This function writes content to a given file descriptor.

e The return type of this file is an integer. It returns -1 for an error or if any
signal interrupt is raised; otherwise, it returns the number of bytes that are
returned to a file.

e The following shows the syntax.
size_t write (int file_descriptor, voidx buffer, size_t size);

e This function syntax is the same as the read function. However, the key
difference is that it writes the content in a file using the buffer. The read
function reads the content from a file using a buffer.

o Example: write.c

System Calls for Directories: Creating a Directory

e The creation of a directory is done with the mkdir function, which is available
in the sys/ stat.h library. The return type of this function is an integer.
e It returns 0 on the successful creation of a directory; it returns -1 for a failure.

int mkdir(const char *path, mode_t mode);

e path is the first argument that describes the path and the new directory name
to create in the system.

o mode represents the permissions to give to a new directory.

Deleting a Directory

e The deletion of a directory is done with the rmdir function, which is available
in the sys/stat.h library. The return type of this function is an integer.

e It returns 0 on the successful deletion of a directory; it returns -1 if a failure.

e The following shows the syntax.
int rmdir(const char *pathname);

o pathname determines the directory name with the absolute path to remove
from the system.

Getting the Current Working Directory

e The getcwd function gets the current working directory.
o It is available in the unistd.h library. The return of this function is a character
data type. It returns the program’s current working directory.

char getcwd(char *buffer, size_t buffersize);

e buffer is the first argument; it describes the char array that stores the buffer
content.

o buffersize is the second argument; it is the length of the buffer.

Changing Directory

e There is a chdir system call that changes directory in your operating system.

It is available in the unistd.h library.

e The return type of this function is an integer. It returns 0 on the successful
change in a directory; it returns -1 for a failure.

e The following shows the syntax.
int chdir(const char *path);

o path describes the path to change.

Reading a Directory

e There are two types of functions that read the content in directories: opendir
and readdir.

e They are available in the dirent.h library. The return type of the opendir
function is the directory stream.

o A directory stream is an ordered sequence of all directory entries in a directory.

A directory entry represents the files. This directory stream points to the start
position.

e The return type of readdir is a dirent structure, which returns NULL if the
directory reaches its end. Dirent is a built-in structure that is implemented in
the dirent.h library.

e The following shows the syntax.

10

DIR *opendir(const char *path);

Reading a Directory Contd..

e The path argument indicates the value that you want to open.
struct dirent *readdir(DIR* directorypointer);

e The directorypointer argument should contain the directory stream pointer,
which is a return value of the opendir function.

e The internal structure of dirent is as follows.

struct dirent{
ino_t d_ino; // inode number

off _t d_off; // offset to the next dirent unsigned short d_reclen; //
length of this record unsigned char d_type; // type of file;

char d_name[256]; // filename
};

Closing a Directory

e The closedir function closes the directory stream that is running in a process.
The return type of this function is an integer.

e It returns 0 on the successful closing of a directory; it returns -1 for a failure.

e The following shows the syntax.

int closedir(DIR *directorypointer);

e directorypointer is an argument that contains the directory stream pointer,
which is simply a return value of the opendir function.

System Programs

e Provide a convenient environment for program development and execution

— File management
Programming-language support
— Program loading and execution
— Communications

11

Linker loader

e A loader is used to load the binary executable file into memory, where it is
eligible to run on a CPU core.

— An activity associated with linking and loading is relocation , which as-
signs final addresses to the program parts and adjusts code and data in
the program to match those addresses.

— Most systems allow a program to dynamically linked libraries (DLLs)
as the program is loaded.

— Object files and executable files typically have standard formats that in-
clude the compiled machine code and a symbol table containing metadata
about functions and variables that are referenced in the program.

— For UNIX and Linux systems, this standard format is known as ELF (for
Executable and Linkable Format).

Linker and Loaders

source
program

main.c

gce -¢ main.c
¢ generates

main.o

gcc -0 main main.o -1lm

i generates

main

./main

dynamically’
linked
libraries

program

in memory

Operating System Design: Monolithic UNIX System Struc-
ture

e Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries
~

system-call interface to the kernel

signals terminal file system
i handling

swapping block I/O
character I/O system

system
terminal drivers disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

Kernel

kernel interface to the hardware

terminal controllers
terminals

device controllers
disks and tapes

memaory controllers
physical memory

Linux System Structure

applications

glibc standard c library

system-call interface
file CPU
systems scheduler
networks memory
(TCP/IP) manager
block character
devices devices

device drivers

hardware

14

Layered Approach

user interface

layer O
hardware

Microkernel System Structure

e Darwin macOS is example of microkernel OS

15

1
i

>
L T—

Tel LRI

|
|

Tl L

.

i
!
1

NN W SN NN N N NN NN N SN NCEN N NSNS W B lsmss s s s s e s e s nn nn

hardwaro

Hybrid Systems

e Hybrid combines multiple approaches to address performance, security, usabil-
ity needs

e Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environ-
ment Two system call interfaces: Mach traps and BSD

16

applications
7 v
library interface

Y v
Mach BSD (POSIX)
traps system calls
Y v

. memory
scheduling | IPC management

iokit
Mach kernel

kexts

Window Subsystem for Linux

WINDOWS SUBSYSTEM FOR LINUX

Windows uses a hybrid architecture that provides subsystems to emulate different operating-system environments. These user-mode
subsystems communicate with the Windows kernel to provide actual services. Windows 10 adds a Windows subsystem for Linux (WSL),
which allows native Linux applications (specified as ELF binaries) to run on Windows 10. The typical operation is for a user to start the
Windows application bash.exe, which presents the user with a bash shell running Linux. Internally, the WSL creates a Linux instance
consisting of the init process, which in turn creates the bash shell running the native Linux application /bin/bash. Each of these processes
runs in a Windows Pico process. This special process loads the native Linux binary into the process's own address space, thus providing
an environment in which a Linux application can execute.

Pico processes communicate with the kernel services LXCore and LXSS to translate Linux system calls, if possible using native Windows
system calls. When the Linux application makes a system call that has no Windows equivalent, the LXSS service must provide the
equivalent functionality. When there is a one-to-one relationship between the Linux and Windows system calls, LXSS forwards the Linux
system call directly to the equivalent call in the Windows kernel. In some situations, Linux and Windows have system calls that are similar
but not identical. When this occurs, LXSS will provide some of the functionality and will invoke the similar Windows system call to provide
the remainder of the functionality. The Linux fork() provides an illustration of this: The Windows createprocess () system call is similar
to fork () but does not provide exactly the same functionality. When fork () is invoked in WSL, the LXSS service does some of the initial
work of fork() and then calls createprocess() to do the remainder of the work. The figure below illustrates the basic behavior of WSL.

user mode
Linux instance

il

kernel mode Sfork ()
I3

CreateProce

LXSS/LXCore Windows kernel

System Boot

e Bootloader is the first program that executes after power, and it never relies
on the kernel. Like Uboot, Vivi, BIOS

e Bootstrap, the second stage boot loader, belongs to kernel code that act as a
link between bootloader and kernel mirroring.

e Bootstrap typically verifies kernel mirroring, compresses kernel mirroring, de-
ploys kernel mirroring to memory, and provides the appropriate context for
kernel execution Execution Process —>bootloader—>bootstrap (HEAD.O)—>
kernel vmlinux (HEAD.O)—> kernel Start_kernel (MAIN.O)

17

Performance monitoring tools

o Counters

Operating systems keep track of system activity through a series of coun-
ters.

Per-Process

ps —reports information for a single process or selection of processes
top—reports real-time statistics for current processes

Performance monitoring tools

e System-Wide

vmstat —reports memory-usage statistics

netstat—reports statistics for network interfaces

iostat —reports 1/0 usage for disks

Most of the counter-based tools on Linux systems read statistics from the
/proc file system. /proc is a “pseudo” file system

Performance monitoring tools

e Tracing

Whereas counter-based tools simply inquire on the current value of certain
statistics that are maintained by the kernel, tracing tools collect data for
a specific event—such as the steps involved in a system-call invocation.
Per-Process

strace —traces system calls invoked by a process

gdb —a source-level debugger

System-Wide

perf—a collection of Linux performance tools

tcpdump —collects network packets

BCC (BPF Compiler Collection)

e On virtualBox Ubuntu look at /usr/share/bcc/tools to see tools

o The details for the tools are given at https://github.com/iovisor/bcc

18

filetop opensnoop c* java* node* mysqld gslower gethostlatency Other:

filelife fileslower Statsnoop php* python* bashreadline memleak capable
vEscount vfsstat syncsnoop ruby* sslsniff
ucalls uflow syscount
cachestat cachetop ugc uocbjnew killsnoop
dcstat dcsnoop ustat uthreads
mountsnoop 1 execsnoop
s idpersec
1 Applications L l plep
cpudist
trace | System Libraries [4 / runglat runglen
s deadlock detector
argdist e & System Call Interface e epuimclatoed
funccount Wt /
funcslower VFS Sockets Scheduler eeconts
funclatenc c offcputime
smkcounty # File Systems TCP/UDP 4 ———— vakeuptime
profile Volume Manager P Virtual offwaketima
Block Device Interface Ethernet Memory “‘"\ softirqs
N/ f 4 Device Drivers comkill memleak
mdflush slabratetop
btrfsdist hardirqgs ttysnoop

btrfsslower 1if m
extddist extdslower teptop teplife tcptracer

. tcpeconnect tcpaccept
xfsdist xfsslower
. tcpcennlat tcpretrans llcstat —>
zfsdist zfsslower CPU
biotop biosnoop profile —|
bioclatency bitesize

References

e A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts |,
10th Edition; 2018; John Wiley and Sons.

e W. Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall, Upper Saddle River, NJ, Eigth edition, 2014.

« K.A. Robbins and S. Robbins. UNIX Systems Programming: Concurrency,
Communication, and Threads. Prentice Hall, Upper Saddle River, NJ, Second
edition, 2003

Related Sections

e All sections included except subsections: 2.2.4, 2.7.3, 2.8.5, 2.10.4

19

	Operating-System Structures
	Operating-System Structures
	Operating System Services (Cont.)
	A View of Operating System Services
	User Operating System Interface - CLI
	Bourne Shell Command Interpreter
	System Calls
	System Calls
	Application Programming Interface
	Application Programming Interface
	System Call Implementation
	Example of Standard API
	API – System Call – OS Relationship
	Types of System Calls
	Types of System Calls (Cont.)
	Types of System Calls (Cont.)
	Standard C Library Example
	C Libraries

	System Calls and I/O Operations for Files
	creat
	creat contd…
	open
	close
	read
	write
	System Calls for Directories: Creating a Directory
	Deleting a Directory
	Getting the Current Working Directory
	Changing Directory
	Reading a Directory
	Reading a Directory Contd..
	Closing a Directory
	System Programs
	Linker loader
	Linker and Loaders
	Operating System Design: Monolithic UNIX System Structure
	Linux System Structure
	Layered Approach
	Microkernel System Structure
	Hybrid Systems
	Window Subsystem for Linux
	System Boot
	Performance monitoring tools
	Performance monitoring tools
	Performance monitoring tools
	BCC (BPF Compiler Collection)
	References
	Related Sections

