
THREADS

Motivation

• Most modern applications are multithreaded

– Threads run within application
– Multiple tasks with the application can be implemented by separate

threads
∗ Update display
∗ Fetch data
∗ Spell checking
∗ Answer a network request

– Process creation is heavy-weight while thread creation is light-weight
– Can simplify code, increase efficiency
– Kernels are generally multithreaded

Concept of Thread

• A thread is a basic unit of CPU utilization.

– It comprises a thread ID, a program counter (PC), a register set, and a
stack.

– It shares with other threads belonging to the same process its code section,
data section, and other operating-system resources, such as open files and
signals.

– A traditional process has a single thread of control.
– If a process has multiple threads of control, it can perform more than one

task at a time.

Single and Multithreaded Processes
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Relationship Between Threads and Processes

Relationship Between Threads and Processes

Examples of Multi-threaded applications

• An application that creates photo thumbnails from a collection of images may
use a separate thread to generate a thumbnail from each separate image.

• A web browser might have one thread display images or text while another
retrieves network data.

• A word processor may have a thread for displaying graphics, another for re-
sponding to keystrokes from the user, and a third for performing spelling and
grammar checking in the background.

• A web server accepts client requests for web pages, images, sound, etc. If the
web server runs as a traditional single-threaded process, it would be able to
service only one client at a time, and a client might have to wait a very long
time for its request to be serviced.
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Multithreaded Server Architecture

• One solution is to have the server run as a single process that accepts requests
• When the server receives a request, it creates a separate process to service that

request.
• But the process creation is time-consuming and resource intensive, therefore,

a multithreaded server can create a thread to service a client.

Benefits

• Responsiveness – may allow continued execution if part of process is blocked,
especially important for user interfaces

• Resource Sharing – threads share resources of process, easier than shared mem-
ory or message passing

• Economy – cheaper than process creation, thread switching lower overhead
than context switching

• Scalability – process can take advantage of multiprocessor architectures

Multicore Programming

• Multicore or multiprocessor systems have many challenges

– Dividing activities
– Balance
– Data splitting
– Data dependency
– Testing and debugging
– Parallelism implies a system can perform more than one task simultane-

ously
– Concurrency supports more than one task making progress
– Single processor/core, scheduler providing concurrency
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Multicore Programming (Cont.)

• Types of parallelism

– Data parallelism – distributes subsets of the same data across multiple
cores, same operation on each

– Task parallelism – distributing threads across cores, each thread perform-
ing unique operation

• As # of threads grows, so does architectural support for threading

– CPUs have cores as well as hardware threads
– Consider Oracle SPARC T4 with 8 cores, and 8 hardware threads per

core

Concurrency vs. Parallelism

• Concurrent execution on single-core system:

• Parallelism on a multi-core system:

Amdahl’s Law

• Identifies performance gains from adding additional cores to an application
that has both serial and parallel components:

– S is a serial portion
– N processing cores

• That is, if the application is 75% parallel / 25% serial, moving from 1 to 2
cores results in a speedup of 1.6 times.

• As N approaches infinity, speedup approaches 1
𝑆
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Amdahl’s Law

• A serial portion of an application disproportionately affects performance
gained by adding additional cores.

• But does the law take into account contemporary multicore systems?

• Here (f) is the parallelizable fraction, (n) is total chip resources, and ® is the
resource devoted to increasing the performance of each core.

User Threads and Kernel Threads

• User threads - management is done by user-level threads library
• Three primary thread libraries:

– POSIX Pthreads
– Windows threads
– Java threads

• Kernel threads - Supported by the Kernel

Multithreading Models

• Many-to-One
• One-to-One
• Many-to-Many

Many-to-One

• Many user-level threads mapped to a single kernel thread
• One thread blocking causes all to block
• Multiple threads may not run in parallel on multi core system because only

one may be in kernel at a time
• Few systems currently use this model, examples:

– Solaris Green Threads
– GNU Portable Threads
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One-to-One

• Each user-level thread maps to kernel thread
• Creating a user-level thread creates a kernel thread
• More concurrency than many-to-one
• Number of threads per process sometimes restricted due to overhead, examples:

– Windows
– Linux
– Solaris 9 and later

Many-to-Many Model

• Allows many user level threads to be mapped to many kernel threads
• Allows the operating system to create a sufficient number of kernel threads
• Examples:

– Solaris
– Windows with ThreadFiber package
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Two-level Model

• Similar to M:M, except that it allows a user thread to be bound to kernel
thread

• Examples

– IRIX
– HP-UX
– Tru64 UNIX
– Solaris 8 and earlier

Thread Libraries

• Thread library provides the programmer with API for creating and managing
threads

– Two primary ways of implementing
∗ Library entirely in user space
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∗ Kernel-level library supported by the OS
– Three main thread libraries are in use today:

∗ POSIX Pthreads , Windows, and Java.
∗ Pthreads , the threads extension of the POSIX standard, may be

provided as either a user-level or a kernel-level library.
∗ The Windows thread library is a kernel-level library available on Win-

dows systems.
∗ The Java thread API allows threads to be created and managed di-

rectly in Java programs.

Strategies for creating multiple threads

• Asynchronous threading

– With asynchronous threading, once the parent creates a child thread,
the parent resumes its execution, so that the parent and child execute
concurrently and independently of one another.

∗ Because the threads are independent, there is typically little data
sharing between them.

Strategies for creating multiple threads

• Synchronous threading occurs when the parent thread creates one or more chil-
dren and then must wait for all of its children to terminate before it resumes.

– Once each thread has finished its work, it terminates and joins with its
parent. Only after all of the children have joined can the parent resume
execution.

– Typically, synchronous threading involves significant data sharing among
threads. For example, the parent thread may combine the results cal-
culated by its various children. All of the following examples use syn-
chronous threading.

Pthreads

• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread creation and synchroniza-

tion
• Specification , not implementation
• API specifies behavior of the thread library, implementation is up to develop-

ment of the library
• Common in UNIX operating systems (Solaris, Linux, Mac OS X)
• The C programming language does not have built-in library support for mul-

tithreaded programming.
• The library to develop portable multithreaded applications is pthread.h; that

is, the POSIX thread library. POSIX stands for portable operating system
interface.

• POSIX threads are lightweight and designed to be very easy to implement. The
pthread.h library is an external third-party library that helps you effectively
do tasks.
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Thread operations

• Thread operations include thread creation, termination, synchronization (
joins,blocking ), scheduling, data management, and process interaction.

• A thread does not maintain a list of created threads or know the thread that
created it.

• All threads within a process share the same address space.

Thread operations

• Threads in the same process share:

– Process instructions
– Most data
– open files (descriptors)
– signals and signal handlers
– current working directory
– User and group id

Thread operations

• Each thread has a unique:

– Thread ID
– set of registers, stack pointer
– stack for local variables, return addresses
– signal mask
– priority
– Return value: errno
– pthread functions return “0” if OK.
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Pthreads Example

Pthreads Example (Cont.)
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Pthreads Code for Joining 10 Threads

The following are the functions in the pthread.h library that create, manipulate,
and exit the threads.

• pthread_create

• pthread_join

• pthread_self

• pthread_equal

• pthread_exit

• pthread_cancel

• pthread_detach

pthread_create

• pthread_create creates a new thread with a thread descriptor.

• A descriptor is an information container of the thread state, execution status,
the process that it belongs to, related threads, stack reference information,
and thread-specific resource information allocated by the process.

• This function takes four arguments as parameters. The return type of this
function is an integer.

• The following shows the syntax.

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void * (*start_routine)(void *), void *arg);
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• The following describes the parameters.

– pthread_t is a thread descriptor variable that takes the thread descriptor,
has an argument, and returns the thread ID, which is an unsigned long
integer.

– pthread_attr_t is an argument that determines all the properties as-
signed to a thread. If it is a normal default thread, then you set the
attribute value to NULL; otherwise, the argument is changed based on
the programmer’s requirements.

– start_routine is an argument that points to the subroutines that exe-
cute by thread. The return type for this parameter is an void type because
it typecasts return types explicitly. This argument takes a single value
as a parameter. If you want to pass multiple arguments, a heterogeneous
datatype should be passed that might be a struct.

– args is a parameter that depends on the previous parameter; it takes
multiple parameters as an argument.

pthread_join

• This function waits for the termination of another thread. It takes two pa-
rameters as arguments and returns the integer type. It returns 0 on successful
termination and –1 if any failure occurs.

• The following shows the syntax.

int pthread_join(pthread_t *thread, void thread_return)

• The following describes the parameters.

– thread takes the ID of the thread that is currently waiting for termination

– thread_return is an argument that points to the exit status of the ter-
mination thread, which is a NULL value.

pthread_self

• This function returns the thread ID of the currently running thread. The
return type of this thread is an integer or the thread_t descriptor.

• It takes zero parameters as arguments. The following shows the syntax.

pthread_t pthread_self()

or

int pthread_self()
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pthread_equal

• This function checks whether two threads are equal or not.

• If the two threads are equal, then the function returns a nonzero value.

• If the threads are not equal, then it is zero.

• It takes two parameters as arguments and returns the integer as output. The
following shows the syntax.

int pthread_equal(pthread_t thread1, pthread_t thread2);

• thread1 and thread2 are the IDs for the first and second thread, respectively.

pthread_exit

• This function terminates a calling thread.

• It takes one argument as a parameter and returns nothing. The following
shows the syntax.

void pthread_exit(void *retval);

• retval is the return value of a thread that you want to detach it.

pthread_cancel

• This function is used for thread cancellation. It takes one parameter as an
argument and returns an integer value. The following shows the syntax.

int pthread_cancel(pthread_t thread);

• pthread is the thread ID of the thread that you want to cancel.

pthread_detach

• This function detaches a thread in a detached state.

• It takes a thread descriptor as an argument and returns the integer value as
output. The following shows the syntax.

int pthread_detach(pthread_t thread);

• thread is a descriptor variable that is passed as an ID, which you want to
detach it.
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Related Topics

• Topics from text: 4.1, 4.2, 4.3,4.4.1
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