SYNCHRONIZATION TOOLS

Background

e Processes can execute concurrently.

e May be interrupted at any time, partially completing execution.

o Concurrent access to shared data may result in data inconsistency.

e Maintaining data consistency requires mechanisms to ensure the orderly exe-
cution of cooperating processes.

Bounded-Buffer — Shared-Memory Solution

e Shared data

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer [BUFFER_SIZE] ;
int in = 0;

int out = 0;

e Solution is correct, but can only use BUFFER_ SIZE-1 elements

Bounded-Buffer — Shared-Memory Solution

e Suppose that we wanted to provide a solution to the consumer-producer prob-
lem that fills all the buffers.

e We can do so by having an integer counter that keeps track of the number of
full buffers.

 Initially, counter is set to 0. It is incremented by the producer after it produces
a new buffer and is decremented by the consumer after it consumes a buffer.

Producer and Consumer

Producer

while (true) { /* produce an item in next produced */
while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}



Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;
counter—-;

/* consume the item in next consumed */

}

Race Condition

e counter++ could be implemented as registerl = counter registerl = registerl
+ 1 counter = registerl

e counter— could be implemented as register2 = counter register2 = register2 -
1 counter = register2

o Consider this execution interleaving with “ count = 5 ” initially:

— S0: producer execute registerl = counter {registerl = 5}

— S1: producer execute registerl = registerl + 1 {registerl = 6}
— S2: consumer execute register2 = counter {register2 = 5}

— S3: consumer execute register2 = register2 — 1 {register2 = 4}
— S4: producer execute counter = registerl {counter = 6 }

— S5: consumer execute counter = register2 {counter = 4}

Race Condition

o Critical Section Problem

— Consider system of n processes { pgy,pq,--Pp_1}
* Each process has critical section segment of code

Process may be changing common variables, updating table, writ-
ing file, etc

When one process in critical section, no other may be in its critical
section

x Critical section problem is to design protocol to solve this that the
processes can use to synchronize their activity so as to cooperatively
share data. Each process must request permission to enter its critical
section.

* Each process must ask permission to enter critical section in entry
section , may follow critical section with exit section , then remainder
section

Critical Section

o General structure of process P,



do {

entry section

critical section

exit section

remainder section

} while (true);

Solution to Critical-Section Problem

1. Mutual Exclusion - If process P i is executing in its critical section, then no
other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection of
the processes that will enter the critical section next cannot be postponed
indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has made
a request to enter its critical section and before that request is granted

1. Assume that each process executes at a nonzero speed
2. No assumption concerning relative speed of the n processes

Solution to Critical-Section Problem

e The critical-section problem could be solved simply in a single-core environ-
ment if we could prevent interrupts from occurring while a shared variable was
being modified.

o Unfortunately, this solution is not as feasible in a multiprocessor environment.
Disabling interrupts on a multiprocessor can be time consuming, since the
message is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases.
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Critical-Section Handling in OS

e Two approaches depend on if the kernel is preemptive or non-preemptive
e Preemptive — allows preemption of process when running in kernel mode.

— Pre-emptive kernels are especially difficult to design for SMP architec-
tures

— But a preemptive kernel may be more responsive.

— A preemptive kernel is more suitable for real-time programming

o Non-preemptive — runs until exits kernel mode, blocks, or voluntarily yields

CPU

— Essentially free of race conditions in kernel mode

Peterson’s Solution

e Good algorithmic description of solving the problem
e Two process solution

— Assume that the load and store machine-language instructions are atomic;
that is, cannot be interrupted

— The two processes share two variables:

int turn;
Boolean flag[2]

e The variable turn indicates whose turn it is to enter the critical section

o The flag array is used to indicate if a process is ready to enter the critical
section. flag[i] = true implies that process P_i is ready! When P_i is
preempted, we denote P_j for other process, j=1-i.

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flaglj] && turn = = j);

critical section
flagl[i] = false;
remainder section
} while (true);



Algorithm for Process P,

EXAMPLE 1

Process 0

Process 1

i=0.=1

i=1.j=0

flag[0] -=TRUE

tum =1

check (flag[1] = TRUE and tum = 1)

- Condition 1s falze because flag[l] =
FALSE

- Smee condition is false, no waiting in
while loop

- Enter the critical section

- Process () happens to lose the
Processor

flag[1] =TRUE

tum =0

check (flag[(] = TRUE and turmn = 0)
- Smce condition 1s true, it keeps busy
waiting until it loses the processor

- Process 0 resumes and continues until
it finishes mn the critical section

- Leave critical section

flag[0] :=FALSE

- Start executing the remamder
{anvthing else a process does besides
using the critical section)

- Process 0 happens to lose the processor

check (flag[(0] = TRUE and turn = ()

- This condition fails because flag[(] =
FALSE

- No more busy waiting

- Enter the critical section




Algorithm for Process P,

EXAMPLE 2

Process 0 Process 1

1={, =1 1=1_ =0

flag[0] = TRUE

tum =1

- Lose processor here
flag[1] .=TRUE
turn =0

check (flag[0] = TRUE and turn = ()
- Condition 1s true so Process 1 busy
waits until it loses the processor

check (flag[1] = TRUE and tum = 1)

- This condition is false because tum =
0

- No waiting in loop

- Enters critical section

Algorithm for Process P,

EXAMPLE 3

Process 0 Process 1

1=, =1 1=1, =0

flag[0] = TRUE

- Lose processor here
flag[1] = TRUE
tum =0

check (flag[0] = TRUE and turn = 0
- Condition 1s true so, Process 1 busy
waits until it loses the processor

tum =1

check (flag[1] = TRUE and turn = 1)
- Condition is true so Process () busy
waits until it loses the processor

check (flag[0] = TRUE and turn = 0)
- The condition i5 false so, Process 1
enters the critical section

Peterson ’ s Solution (Cont.)

e Provable that the three CS requirement are met:

1. Mutual exclusion is preserved P; enters CS only if: either flag[j] = false
or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met



Problem with Peterson’s Solution

e Peterson’s solution is not guaranteed to work on modern computer architec-
tures for the primary reason that, to improve system performance, processors
and/or compilers may reorder read and write operations that have no depen-
dencies.

e As an example, consider the following data that are shared between two
threads:

boolean flag = false;
int x = 0;

e where Thread 1 performs the statements

while (!flag);
print x;

e and Thread 2 performs

x = 100;
flag = true;

e The expected behavior is, of course, that Thread 1 outputs the value 100 for
variable x.

Problem with Peterson’s Solution

e However, as there are no data dependencies between the variables flag and x,
it is possible that a processor may reorder the instructions for

— Thread 2 so that flag is assigned true before assignment of x = 100. In
this situation, it is possible that Thread 1 would output O for variable x.

— Less obvious is that the processor may also reorder the statements issued
by Thread 1 and load the variable x before loading the value of flag. If
this were to occur, Thread 1 would output O for variable x even if the
instructions issued by Thread 2 were not reordered.

— How does this affect Peterson’s solution? Consider what happens if the
assignments of the first two statements that appear in the entry section
of Peterson’s solution are reordered;

* it is possible that both threads may be active in their critical sections
at the same time.

Synchronization Hardware

e Many systems provide hardware support for implementing the critical section
code.
o All solutions below based on idea of locking



— Protecting critical regions via locks
e Uniprocessors — could disable interrupts

— Currently running code would execute without preemption
— Generally too inefficient on multiprocessor systems

x Operating systems using this not broadly scalable
e Modern machines provide special atomic hardware instructions

— Atomic = non-interruptible
— Either test memory word and set value Or swap contents of two memory
words

Memory Barriers

o If a system may reorder instructions, a policy that can lead to unreliable data
states.

o How a computer architecture determines what memory guarantees it will pro-
vide to an application program is known as its memory model. A memory
model falls into one of two categories:

1. Strongly ordered, where a memory modification on one processor is immedi-
ately visible to all other processors.

2. Weakly ordered, where modifications to memory on one processor may not be
immediately visible to other processors.

Memory Barriers

e When a memory barrier instruction is performed, the system ensures that all
loads and stores are completed before any subsequent load or store operations
are performed.

e Therefore, even if instructions were reordered, the memory barrier ensures that
the store operations are completed in memory and visible to other processors
before future load or store operations are performed .

e If we add a memory barrier operation to Thread 1

while (!flag)
memory_barrier ();
print x;

o we guarantee that the value of flag is loaded before the value of x.

Memory Barriers

e Similarly,

x = 100;
memory_barrier ();
flag = true;



e We ensure that the assignment to x occurs before the assignment to flag.

e memory barriers are considered very low-level operations and are typically

e only used by kernel developers when writing specialized code that ensures
mutual exclusion.

Hardware Instructions

e Many modern computer systems provide special hardware instructions that
allow us either to test and modify the content of a word or to swap the contents
of two words atomically —that is, as one uninterruptible unit.

— First one is test_and_ set () instruction, the important characteristic of
this instruction is that it is executed atomically.

* Thus, if two test__and__set () instructions are executed simultaneously
(each on a different core), they will be executed sequentially in some
arbitrary order.

« If the machine supports the test_and_set () instruction, then we
can implement mutual exclusion by declaring a boolean variable lock,
initialized to false.

boolean test_and_set ( boolean *target) {
boolean rv = *target;
xtarget = true;

return rv ;

}

do {

while ( test_and_set (&lock))
; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

Hardware Instructions

o Second omne is compare_and_swap () instruction (CAS), just like the
test_and_set () instruction, operates on two words atomically, but uses a
different mechanism that is based on swapping the content of two words.

— The operand value is set to new__value only if the expression (*value ==
expected) is true. Regardless, CAS always returns the original value of
the variable value.

— The important characteristic of this instruction is that it is executed
atomically.

— Thus, if two CAS instructions are executed simultaneously (each on a
different core), they will be executed sequentially in some arbitrary order.

int compare_and_swap (int *value, int expected, int
< mnew_value ) {

int temp = *value;

if (*#value == expected)



*value = new_value ;
return temp;

}

Hardware Instructions

e Mutual exclusion using CAS can be provided as follows:

— A global variable (lock) is declared and is initialized to 0. The first process
that invokes compare_and_swap () will set lock to 1.

— It will then enter its critical section, because the original value of lock was
equal to the expected value of 0. Subsequent calls to compare__and__swap
() will not succeed, because lock now is not equal to the expected value
of 0.

— When a process exits its critical section, it sets lock back to 0, which
allows another process to enter its critical section.

while (true) {

while ( compare_and_swap (&lock, 0, 1) != 0)
; /* do nothing */

/* critical section */

lock = 0;
/* remainder section */
+

Bounded-waiting Mutual Exclusion with test__and_set

do { waiting[i] = true; key = true; while (waiting[i] && key)
key = test_and_set(&lock) ;

waiting[i] = false;

/* critical section */

j=(@+1) % n;

while ((j !'= i) && !waiting[j])

j=G+1) %n;

if (j == 1)
lock = false;
else

waiting[j] = false;
/* remainder section */
} while (true);

Hardware Instructions

e To prove that the progress requirement is met.

— Since a process exiting the critical section either sets lock to 0 or sets
waiting[j] to false. Both allow a process that is waiting to enter its critical
section to proceed.



— To prove that the bounded-waiting requirement is met:

— when a process leaves its critical section, it scans the array waiting in the
cyclic ordering (i + 1,i+ 2, .., n — 1,0, .., i — 1).

— It designates the first process in this ordering that is in the entry section

(waiting[j] == true) as the next one to enter the critical section.
— Any process waiting to enter its critical section will thus do so within n
— 1 turns.

Atomic Variable

o Typically, the compare_and_swap () instruction is not used directly to provide
mutual exclusion. Rather, it is used as a basic building block for constructing
other tools that solve the critical-section problem.

— One such tool is an atomic variable, which provides atomic operations on
basic data types such as integers and booleans .

— Incrementing or decrementing an integer value may produce a race con-
dition. Atomic variables can be used in to ensure mutual exclusion in
situations where there may be a data race on a single variable while it is
being updated, as when a counter is incremented.

— As an example, the following increments the atomic integer sequence:

increment (&sequence) ;

where the increment() function is implemented using the CAS instruction:

void increment( atomic_int *v){

int temp;

do {

temp = *v;

}

while (temp != compare_and_swap (v, temp, temp+1));
}

Mutex Locks

e Previous solutions are complicated and generally inaccessible to application
programmers

e OS designers build software tools to solve critical section problem, simplest is
mutex lock

o Protect a critical section by first acquire() a lock then release() the lock

— Boolean variable indicating if lock is available or not
 Calls to acquire() and release() must be atomic

— Usually implemented via hardware atomic instructions
e But this solution requires busy waiting

— the lock therefore called a spinlock
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Solution to Critical-section Problem Using Locks

e A mutex lock has a boolean variable available whose value indicates if the lock
is available or not.

o If the lock is available, a call to acquire() succeeds, and the lock is then
considered unavailable.

o A process that attempts to acquire an unavailable lock is blocked until the lock
is released.

do {

acquire lock
critical section
release lock
remainder section
} while (TRUE);

acquire() and release()

acquire() { while (!available)
; /* busy wait */

available = false;;

+

+ release() {

available = true;

}

o Calls to either acquire() or release() must be performed atomically. Thus,
mutex locks can be implemented using the CAS operation.

— The main disadvantage of the implementation given here is that it requires
busy waiting.
+* While a process is in its critical section, any other process that tries
to enter its critical section must loop continuously in the call to ac-
quire().
* This continual looping is clearly a problem in a real multiprogram-
ming system, where a single CPU core is shared among many pro-
cesses.

Mutex Locks

o Busy waiting also wastes CPU cycles that some other process might be able
to use productively.

— The type of mutex lock we have been describing is also called a spinlock
because the process “spins” while waiting for the lock to become available.
One alternative to avoid busy waiting by temporarily putting the waiting
process to sleep and then awakening it once the lock becomes available.
But that requires context switching.

12



— However, Spinlocks have an advantage in that no context switch is re-
quired when a process must wait on a lock, and a context switch may
take considerable time.

— On modern multicore computing systems, spinlocks are widely used in
many operating systems.

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

e Semaphore S — integer variable

o Can only be accessed via two indivisible (atomic) operations

— wait() and signal(), originally called P() and V()

— Definition of the wait() operation

wait(8) {

while (S <= 0)

; // busy wait

S

}

Definition of the signal() operation
signal(S) {

S++;

}

Semaphore Usage

e Counting semaphore — integer value can range over an unrestricted domain.

« Counting semaphores can be used to control access to a given resource consist-
ing of a finite number of instances.

e The semaphore is initialized to the number of resources available.

o Each process that wishes to use a resource performs a wait() operation on the
semaphore (thereby decrementing the count).

o When a process releases a resource, it performs a signal() operation (increment-
ing the count).

e When the count for the semaphore goes to 0, all resources are being used. After
that, processes that wish to use a resource will block until the count becomes
greater than 0.

e Binary semaphore — integer value can range only between 0 and 1. It is same
as a mutex lock

Semaphore Usage

e Can solve various synchronization problems
e Consider P1 and P2 that require S1 to happen before S2
e Create a semaphore “ synch ” initialized to 0

13



123l ¢
S1
signal (synch) ;
P2:
wait (synch) ;
S2 ;

Semaphore Implementation

o Mutex locks suffers from busy waiting and wait() and signal() semaphore op-
erations has the same problem.

o To overcome this problem, we can modify the definition of the wait() and
signal() operations as follows:

— When a process executes the wait() operation and finds that the
semaphore value is not positive, it must wait.

— However, rather than engaging in busy waiting, the process can suspend
itself.

— The suspend operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state.

— Then control is transferred to the CPU scheduler, which selects another
process to execute.

— Then:

* A process that is suspended, waiting on a semaphore S, should be
restarted when some other process executes a signal() operation.

« The process is restarted by a wakeup() operation, which changes the
process from the waiting state to the ready state.

* The process is then placed in the ready queue.

Semaphore Implementation with no Busy waiting

o With each semaphore there is an associated waiting queue
e FEach entry in a waiting queue has two data items:

— value (of type integer)
— pointer to next record in the list

o Two operations:

— block — place the process invoking the operation on the appropriate wait-
ing queue

— wakeup — remove one of processes in the waiting queue and place it in
the ready queue

Semaphore Implementation

e To implement semaphores under this definition:



typedef struct {
int value;

struct process *list;

}

semaphore;

wait (semaphore *S) {
S->value——;

if (S->value < 0) {

add this process to S->list};
sleep();

}
}

signal (semaphore *S) {

S_

>value++;

if (8->value <= 0) {
remove a process P from S->list;
wakeup (P) ;

}
b

Each semaphore has an integer value and a list of processes list.

When a process must wait on a semaphore, it is added to the list of processes.

A signal() operation removes one process from the list of waiting processes and
awakens that process.

Semaphore Implementation

In this implementation:

— The semaphore values may be negative, whereas semaphore values are
never negative under the classical definition of semaphores with busy
waiting.

— If a semaphore value is negative, its magnitude is the number of processes
waiting on that semaphore.

— The list of waiting processes can be easily implemented by a link field in
each process control block (PCB).

— Each semaphore contains an integer value and a pointer to a list of PCBs.

Semaphore Implementation

It is critical that semaphore operations be executed atomically.

We must guarantee that no two processes can execute wait() and signal() op-
erations on the same semaphore at the same time.

This is a critical-section problem, and in a single-processor environment, we
can solve it by simply inhibiting interrupts during the time the wait() and
signal() operations are executing.

In a multicore environment, interrupts must be disabled on every processing
core, which is a difficult task and can seriously diminish performance.
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e Therefore, SMP systems must provide alternative techniques—such as com-
pare_and_swap () or spinlocks—to ensure that wait() and signal() are per-
formed atomically.

Semaphore Implementation

e Thus, the implementation becomes the critical section problem where the wait
and signal code are placed in the critical section

— Now may be we have busy waiting in critical section implementation

o Note that applications may spend lots of time in critical sections and therefore
this is not a good solution

Liveness

e One consequence of using synchronization tools to coordinate access to critical
sections is the possibility that a process attempting to enter its critical section
will wait indefinitely.

— Liveness refers to a set of properties that a system must satisfy to ensure
that processes make progress during their execution life cycle.

— A process waiting indefinitely under the circumstances just described is
an example of a “liveness failure.”

— There are many different forms of liveness failure; however, all are gener-
ally characterized by poor performance and responsiveness.

* A very simple example of a liveness failure is an infinite loop. A busy
wait loop presents the possibility of a liveness failure, especially if a
process may loop an arbitrarily long period of time.

* Deadlocks

* Priority Inversion

Deadlock and Starvation

e Deadlock — two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes
e Let S and Q be two semaphores initialized to 1

PO
wait (S);
wait(Q);

signal(S);
signal(Q);

P1
wait (Q) ;
wait(S);

signal(Q);
signal(S);
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 Since these signal() operations cannot be executed, PO and P1 are deadlocked.

e Starvation — indefinite blocking: A process may never be removed from the
semaphore queue in which it is suspended

Liveness

e Priority Inversion — Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

— As an example, assume we have three processes—L, M, and H—whose
priorities follow the order L < M < H.

— Assume that process H requires a semaphore S, which is currently being
accessed by process L. Ordinarily, process H would wait for L to finish
using resource S.

— However, now suppose that process M becomes runnable, thereby pre-
empting process L. Indirectly, a process with a lower priority—process
M—has affected how long process H must wait for L to relinquish re-
source S.

e This liveness problem is known as priority inversion , and it can occur only in
systems with more than two priorities.

o Typically, priority inversion is avoided by implementing a priority-inheritance
protocol . According to this protocol, all processes that are accessing resources
needed by a higher-priority process inherit the higher priority until they are
finished with the resources in question.

— When they are finished, their priorities revert to their original values
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Related Topics

e Read Chapter 6 from book only: sections 6.1-6.6 & 6.8
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