
DEADLOCKS

Introduction to Deadlock

• In a multiprogramming environment, multiple threads compete for limited
resources.

– A thread requests resources; if unavailable, it waits.
– Sometimes, a waiting thread can never proceed because the resources it

needs are held by other waiting threads, leading to a deadlock.
– Deadlock occurs when every process in a set is waiting for an event that

only another process in the set can cause.

• Chapter Objectives:

– Describe deadlocks that prevent concurrent processes from completing
tasks.

– Present methods to prevent or avoid deadlocks in a computer system.

System Model

• A system has a finite number of resources distributed among competing
threads.

• Resources are partitioned into types, each with identical instances (e.g., CPU
cycles, files, I/O devices).

– For example, four CPUs mean the CPU resource type has four instances.

• Mutex locks and semaphores are common system resources and frequent
sources of deadlock.

• If a thread requests an instance of a resource type, the allocation of any in-
stance of the type should satisfy the request. If it does not, then the instances
are not identical, and the resource type classes have not been defined properly.
Therefore:

– Resource types: 𝑅1, 𝑅2, … , 𝑅𝑚 (e.g., CPU cycles, memory space, I/O
devices)

– Each resource type 𝑅𝑖 has 𝑊𝑖 instances.
– The number of resources requested may not exceed the total number of

resources available in the system.

System Model

• Each process utilizes a resource as follows:

– Request: The thread requests the resource. If the request cannot be
granted immediately then the requesting thread must wait until it can
acquire the resource.

– Use: The thread can operate on the resource (for example, if the resource
is a mutex lock, the thread can access its critical section).

– Release: The thread releases the resource.

1

• The request and release of resources may be system calls, examples are the re-
quest() and release() of a device

– allocate() and free() memory system calls.
– wait() and signal() operations on semaphores and through ac-

quire() and release() of a mutex lock.

System Model

• A system table records whether each resource is free or allocated. For each
allocated resource, the table also records the thread to which it is allocated.

• If a thread requests a resource currently allocated to another thread, it can be
added to a queue of threads waiting for this resource.

• To illustrate a deadlocked state, consider the dining-philosophers problem:

– Resources are represented by chopsticks.
– If all philosophers get hungry simultaneously and each grabs the chopstick

on their left, no chopsticks are available.
– Each philosopher is then blocked, waiting for their right chopstick to

become available.
– Developers of multithreaded applications must remain aware of the pos-

sibility of deadlocks.

Deadlock in Multithreaded Applications

/* thread_one runs in this function */
void * do_work_one (void *param)
{
pthread_mutex_lock (& first_mutex);
pthread_mutex_lock (& second_mutex);
/** * Do some work */
pthread_mutex_unlock (& second_mutex);
pthread_mutex_unlock (& first_mutex); pthread_exit (0);
} /* thread_two runs in this function */
void * do_work_two (void *param)
{
pthread_mutex_lock (& second_mutex);
pthread_mutex_lock (& first_mutex);
/*** Do some work */
pthread_mutex_unlock (& first_mutex);
pthread_mutex_unlock (& second_mutex);
pthread_exit (0);
}

Deadlock in Multithreaded Applications

• thread_one attempts to acquire the mutex locks in the order (1) first_mutex
, (2) second_mutex.

• At the same time, thread_two attempts to acquire the mutex locks in the
order (1) second_mutex , (2) first_mutex .

2

• Deadlock is possible if thread_one acquires first_mutex while thread_two
acquires second_mutex .

• Note that, even though deadlock is possible, it will not occur if thread_one
can acquire and release the mutex locks for first_mutex and second_mutex
before thread_two attempts to acquire the locks.

• And, of course, the order in which the threads run depends on how they are
scheduled by the CPU scheduler.

• It is difficult to identify and test for deadlocks that may occur only under
certain scheduling circumstances.

Livelock

• Livelock is another form of liveness failure.
• It is similar to deadlock; both prevent two or more threads from proceeding,

but the threads are unable to proceed for different reasons.
• Whereas deadlock occurs when every thread in a set is blocked waiting for an

event that can be caused only by another thread in the set, livelock occurs
when a thread continuously attempts an action that fails.

• ‘pthreads pthread_mutex_trylock() function, which attempts to acquire a mu-
tex lock without blocking.

• This situation can lead to livelock if thread_one acquires first_mutex, fol-
lowed by thread_two acquiring second_mutex.

• Each thread then invokes pthread_mutex_trylock(), which fails, releases
their respective locks, and repeats the same actions indefinitely.

• It thus can generally be avoided by having each thread retry the failing oper-
ation at random times.

Livelock

/* thread_one runs in this function */
void * do_work_one (void *param)
{
int done = 0; while (!done) {
pthread_mutex_lock (& first_mutex);

if (pthread_mutex_trylock (& second_mutex))
{/*** Do some work */ pthread_mutex_unlock (& second_mutex);
pthread_mutex_unlock (& first_mutex);
done =_1;}
else
pthread_mutex_unlock (& first_mutex);}
pthread_exit (0);
}
/* thread_two runs in this function */
void * do_work_two (void *param)
{
int done = 0;
while (!done)
{
pthread_mutex_lock (& second_mutex);

if (pthread_mutex_trylock (& first_mutex))

3

{
/*** Do some work*/
pthread_mutex_unlock (& first_mutex);
pthread_mutex_unlock (& second_mutex);
done =_1;
}
else
pthread_mutex_unlock (& second_mutex);
}
pthread_exit (0);
}

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

• Mutual exclusion: only one process at a time can use a resource
• Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes
• No preemption: a resource can be released only voluntarily by the process

holding it, after that process has completed its task
• Circular wait: there exists a set {𝑃0, 𝑃1, … , 𝑃𝑛} of waiting processes such

that 𝑃0 is waiting for a resource that is held by 𝑃1, 𝑃1 is waiting for a resource
that is held by 𝑃2, …, 𝑃𝑛−1 is waiting for a resource that is held by 𝑃𝑛, and
𝑃𝑛 is waiting for a resource that is held by 𝑃0.

• All four conditions must hold for a deadlock to occur. The
circular-wait condition implies the hold-and-wait condition, so the four
conditions are not completely independent

Resource-Allocation Graph

• Deadlocks can be described more precisely in terms of directed graph called a
system resource-allocation graph.

• Graph is a set of vertices V and a set of edges E .

– V is partitioned into two types:
– T = {𝑇1 , 𝑇2 , …, 𝑇𝑛 }, the set consisting of all the active threads in the

system
– R = 𝑅1, 𝑅2, …, 𝑅𝑚, the set consisting of all resource types in the system.
– Each thread 𝑇𝑖 is represented as a circle and each resource type 𝑅𝑗 as a

rectangle.
– request edge – directed edge 𝑇𝑖 → 𝑅𝑗
– assignment edge – directed edge 𝑅𝑗 → 𝑇𝑖

4

Resource-Allocation Graph (Cont.)

Resource-Allocation Graph (Cont.)

• Figure represents the deadlock situation.
• Resource type 𝑅𝑗 may have more than one instance, each such instance is

represented as a dot within the rectangle.
• Note that a request edge points only to the rectangle 𝑅𝑗 , whereas an assign-

ment edge must also designate one of the dots in the rectangle.
• When thread 𝑇𝑖 requests an instance of resource type 𝑅𝑗 , a request edge is

inserted in the resource-allocation graph.
• When this request can be fulfilled, the request edge is instantaneously trans-

formed to an assignment edge.
• When the thread no longer needs access to the resource, it releases the resource.

As a result, the assignment edge is deleted.

5

Example of a Resource Allocation Graph

• The resource-allocation graph depicts the following situation.
• The sets T , R , and E :

– T = { 𝑇1 , 𝑇2 , 𝑇3 }
– 𝑅 = 𝑅1, 𝑅2, 𝑅3, 𝑅4
– E = {𝑇1 → 𝑅1 , 𝑇2 → 𝑅3, 𝑅1 → 𝑇2 , 𝑅2 → 𝑇2 , 𝑅2 → 𝑇1 , 𝑅3 → 𝑇3 }

• Resource instances:

– One instance of resource type 𝑅1
– Two instances of resource type 𝑅2
– One instance of resource type 𝑅3
– Three instances of resource type 𝑅4

• Thread states:

– Thread 𝑇1 is holding an instance of resource type 𝑅2 and is waiting for
an instance of resource type 𝑅1.

– Thread 𝑇2 is holding an instance of 𝑅1 and an instance of 𝑅2 and is
waiting for an instance of 𝑅3.

– Thread 𝑇3 is holding an instance of 𝑅3.

6

Example of a Resource Allocation Graph

• Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no thread in the system is deadlocked.

• If the graph does contain a cycle, then a deadlock may exist.
• If each resource type has exactly one instance, then a cycle implies that a

deadlock has occurred.
• If the cycle involves only a set of resource types, each of which has only a single

instance, then a deadlock has occurred.
• Each thread involved in the cycle is deadlocked. In this case, a cycle in the

graph is both a necessary and a sufficient condition for the existence of dead-
lock.

• If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

7

Resource Allocation Graph With A Deadlock

• Suppose that thread 𝑇3 requests an instance of resource type 𝑅2. Since no
resource instance is currently available, we add a request edge 𝑇3 → 𝑅2 to the
graph.

• At this point, two minimal cycles exist in the system:

– 𝑇1 → 𝑅1 → 𝑇2 → 𝑅3 → 𝑇3 → 𝑅2 → 𝑇1
– 𝑇2 → 𝑅3 → 𝑇3 → 𝑅2 → 𝑇2

• Threads 𝑇1, 𝑇2, and 𝑇3 are deadlocked.
• Thread 𝑇2 is waiting for the resource 𝑅3, which is held by thread 𝑇3. Thread

𝑇3 is waiting for either thread 𝑇1 or thread 𝑇2 to release resource 𝑅2.
• In addition, thread 𝑇1 is waiting for thread 𝑇2 to release resource 𝑅1.

8

9

Graph With A Cycle But No Deadlock

• We also have a cycle: 𝑇1 → 𝑅1 → 𝑇3 → 𝑅2 → 𝑇1
• However, there is no deadlock. Observe that thread 𝑇4 may release its instance

of resource type 𝑅2 .
• That resource can then be allocated to 𝑇3 , breaking the cycle.
• To summarize, if a resource-allocation graph does not have a cycle, then the

system is not in a deadlocked state.
• If there is a cycle, then the system may or may not be in a deadlocked state.
• This observation is important when we deal with the deadlock problem.

10

Example

• 𝑝3 and 𝑝4 are in deadlock.

Basic Facts

• If graph contains no cycles ⟹ no deadlock
• If graph contains a cycle ⟹

– if only one instance per resource type, then deadlock
– if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

• We can handle deadlocks in three ways:

– Ignore the problem and pretend deadlocks never occur (used by most OS,
including UNIX).

– Use a protocol to prevent or avoid deadlocks, ensuring the system never
enters a deadlocked state.

– Allow the system to enter a deadlocked state, detect it, and recover.

Methods for Handling Deadlocks

• Ensure the system never enters a deadlock state:

– Deadlock prevention: Methods to ensure at least one necessary condition
cannot hold.

– Deadlock avoidance: Requires advance information about resource re-
quests and usage.

∗ The OS decides if a thread should wait based on:
· Currently available resources.
· Resources allocated to each thread.
· Future requests and releases of each thread.

11

Deadlock Prevention

• By ensuring that at least one of these conditions cannot hold, we can prevent
the occurrence of a deadlock.

• Mutual Exclusion – not required for sharable resources (e.g., read-only files);
must hold for non-sharable resources; Read-only files are a good example of a
sharable resource; A thread never needs to wait for a sharable resource.

• Hold and Wait – must guarantee that whenever a process requests a resource,
it does not hold any other resources

– Require process to request and be allocated all its resources before it
begins execution or allow process to request resources only when the
process has none allocated to it.

– Low resource utilization; starvation possible

• Alternatively, if a thread requests some resources:

– We first check whether they are available. If they are, we allocate them.
∗ If they are not, we check whether they are allocated to some other

thread that is waiting for additional resources.
∗ If so, we preempt the desired resources from the waiting thread and

allocate them to the requesting thread.
∗ If the resources are neither available nor held by a waiting thread,

the requesting thread must wait.

Deadlock Prevention (Cont.)

• No Preemption – If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all resources currently
being held are released

– Preempted resources are added to the list of resources for which the pro-
cess is waiting

– Process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting

• Using this protocol the circular-wait condition cannot hold.

– In this we assign each resource a unique integer number, which allow
resources to be compared.

– Each thread can ask the resources in increasing order. Alternatively, if
thread must release higher order resource before requesting lower order.

– Let the set of threads involved in the circular wait be { 𝑇0 , 𝑇1 , …, 𝑇𝑛
}, where 𝑇𝑖 is waiting for a resource 𝑅𝑖 , which is held by thread 𝑇𝑖+1 .
Then, since thread 𝑇𝑖+1 is holding resource 𝑅𝑖 while requesting resource
𝑅𝑖+1 , we must have 𝐹(𝑅𝑖) < 𝐹(𝑅𝑖+1) for all 𝑖.

– But this condition means that 𝐹(𝑅0) < 𝐹(𝑅1) < … < 𝐹(𝑅𝑛) < 𝐹(𝑅0).
By transitivity, 𝐹(𝑅0) < 𝐹(𝑅0), which is impossible. Therefore, there
can be no circular wait.

Deadlock Avoidance

• Requires additional a priori information:

12

– Example: System with resources 𝑅1 and 𝑅2 needs to know thread P will
request 𝑅1 then 𝑅2, while thread Q will request 𝑅2 then 𝑅1.

– With this sequence knowledge, the system can decide if a thread should
wait to avoid deadlock.

• Each request decision considers:

– Resources currently available.
– Resources currently allocated to each thread.
– Future requests and releases of each thread.

• Simplest model: Each process declares the maximum number of resources it
may need.

• Deadlock-avoidance algorithm ensures no circular-wait condition.
• Resource-allocation state defined by:

– Number of available and allocated resources.
– Maximum demands of the processes.

Safe State

• A state is safe if the system can allocate resources to each thread (up to its
maximum) in some order and still avoid a deadlock.

• When a process requests an available resource, the system must decide if im-
mediate allocation leaves the system in a safe state.

• A sequence of threads < 𝑇1, 𝑇2, …, T_n > is a safe sequence for the current
allocation state if, for each 𝑇𝑖, the resource requests that 𝑇𝑖 can still make can
be satisfied by the currently available resources plus the resources held by all
𝑇𝑗, with 𝑗 < 𝑖.

• If the resources that 𝑇𝑖 needs are not immediately available, then 𝑇𝑖 can wait
until all 𝑇𝑗 have finished. When they have finished, 𝑇𝑖 can obtain all of its
needed resources, complete its task, return its allocated resources, and ter-
minate. When 𝑇𝑖 terminates, 𝑇𝑖+1 can obtain its needed resources, and so
on.

• If no such sequence exists, then the system state is said to be unsafe.

13

Safe, Unsafe, Deadlock State

Basic Facts

• If a system is in safe state –> no deadlocks
• If a system is in unsafe state –> possibility of deadlock
• Avoidance –> ensure that a system will never enter an unsafe state.

Avoidance Algorithms

• A single instance of a resource type

– Use a resource-allocation graph

• Multiple instances of a resource type

– Use the banker’s algorithm

Example

• To illustrate, consider a system with twelve resources and three threads: 𝑇0,
𝑇1, and 𝑇2.

– Thread 𝑇0 requires ten resources, thread 𝑇1 may need as many as four,
and thread 𝑇2 may need up to nine resources.

– Suppose that, at time 𝑡0, thread 𝑇0 is holding five resources, thread 𝑇1
is holding two resources, and thread 𝑇2 is holding two resources. (Thus,
there are three free resources.)

– Need = Max need – Allocation; 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑖−1) +𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒.

14

– At time 𝑇0 , the system is in a safe state. The sequence < 𝑇1 , 𝑇0 , 𝑇2
> satisfies the safety condition.

– Thread 𝑇1 can immediately be allocated all its resources and then return
them (the system will then have five available resources);

– then thread 𝑇0 can get all its resources and return them (the system will
then have ten available resources);

– and finally thread 𝑇2 can get all its resources and return them (the system
will then have all twelve resources available).

Example

Maximum Needs Allocate Need Available
T0 10 5 5 3
T1 4 2 2
T2 9 2 7

Example

• A system can go from a safe state to an unsafe state. Suppose that, at time
𝑇1 , thread 𝑇2 requests and is allocated one more resource.

– The system is no longer in a safe state. At this point, only thread 𝑇1 can
be allocated all its resources.

∗ When it returns them, the system will have only four available re-
sources. Since thread 𝑇0 is allocated five resources but has a maxi-
mum of ten, it may request five more resources. If it does so, it will
have to wait, because they are unavailable.

∗ Similarly, thread 𝑇2 may request six additional resources and have
to wait, resulting in a deadlock. Our mistake was in granting the
request from thread 𝑇2 for one more resource.

∗ If we had made 𝑇2 wait until either of the other threads had finished
and released its resources, then we could have avoided the deadlock.

Example

Maximum Needs Allocate Need Available
T0 10 5 5 2
T1 4 2 2
T2 9 3 6

Example

• One mistake in granting the request from thread T2 for one more resource
resulted in deadlock.

– We could have avoided the deadlock if we could have postponed the allo-
cation of an additional resource to T2 until other threads have finished
and released their resources.

15

Example

• Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock.

– The idea is simply to ensure that the system will always remain in a safe
state. Initially, the system is in a safe state.

– Whenever a thread requests a resource that is currently available, the
system must decide whether the resource can be allocated immediately
or the thread must wait.

– The request is granted only if the allocation leaves the system in a safe
state.

– In this scheme, if a thread requests a resource that is currently available,
it may still have to wait. Thus, resource utilization may be lower than it
would otherwise be.

Example

Total Resources = 15, Threads = 3

Maximum Needs Allocate Need Available
T0$ 6 3
T1 7 5
T2 8 4

16

Example

Resource-Allocation Graph Scheme

• A variant of resource-allocation graph with only one instance per resource type.
• Introduce a new type of edge, called a claim edge.
• A claim edge 𝑇𝑖 99K 𝑅𝑗 indicates that thread 𝑇𝑖 may request resource 𝑅𝑗 in

the future.
• Represent claim edges by dashed lines.
• When thread 𝑇𝑖 requests resource 𝑅𝑗, convert the claim edge 𝑇𝑖 99K 𝑅𝑗 to a

request edge.
• When resource 𝑅𝑗 is released by 𝑇𝑖, reconvert the assignment edge 𝑅𝑗 → 𝑇𝑖 to

a claim edge 𝑇𝑖 99K 𝑅𝑗.
• Resources must be claimed a priori in the system.
• Before thread 𝑇𝑖 starts executing, all its claim edges must appear in the

resource-allocation graph.

Resource-Allocation Graph Scheme

• Suppose thread 𝑇𝑖 requests resource 𝑅𝑗.

17

• The request can be granted only if converting the request edge 𝑇𝑖 → 𝑅𝑗 to
an assignment edge 𝑅𝑗 → 𝑇𝑖 does not form a cycle in the resource-allocation
graph.

• A cycle-detection algorithm, requiring 𝑂(𝑛2) operations (where 𝑛 is the num-
ber of threads), is used.

• If no cycle exists, the allocation leaves the system in a safe state.
• If a cycle is found, the allocation puts the system in an unsafe state, and thread

𝑇𝑖 must wait.

Resource-Allocation Graph

• Suppose that 𝑇2 requests 𝑅2.
• Although 𝑅2 is currently free, we cannot allocate it to 𝑇2 , since this action

will create a cycle in the graph.

Unsafe State In Resource-Allocation Graph

• A cycle indicates that the system is in an unsafe state. If 𝑇1 requests 𝑅2, and
𝑇2 requests 𝑅1, then a deadlock will occur.

Banker’s Algorithm

• The resource-allocation-graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type.

• Banker’s algorithm can apply to Multiple instances
• When a new thread enters the system, it must declare the maximum number

of instances of each resource type that it may need.
• This number may not exceed the total number of resources in the system.
• Data Structures for the Banker ’ s Algorithm

– Several data structures must be maintained to implement the banker’s
algorithm.

18

– These data structures encode the state of the resource-allocation system.
– Let n = number of processes, and m = number of resources types.

∗ Available : (Vector of length (m)). If 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[𝑗] = 𝑘, there are 𝑘
instances of resource type 𝑅𝑗 available.

∗ Max : (n × m matrix). If 𝑀𝑎𝑥[𝑖, 𝑗] = 𝑘, then process 𝑇𝑖 may request
at most 𝑘 instances of resource type 𝑅𝑗.

∗ Allocation : (n × m matrix). If 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[𝑖, 𝑗] = 𝑘, then 𝑇𝑖 is
currently allocated 𝑘 instances of 𝑅𝑗.

∗ Need : (n × m matrix). If 𝑁𝑒𝑒𝑑[𝑖, 𝑗] = 𝑘, then 𝑇𝑖 may need 𝑘
more instances of 𝑅𝑗 to complete its task. 𝑁𝑒𝑒𝑑[𝑖, 𝑗] = Max[𝑖, 𝑗] −
Allocation[𝑖, 𝑗]

– These data structures vary over time in both size and value.

Data Structures for the Banker ’s Algorithm

• Let 𝑋 and 𝑌 be vectors of length n.
• We say that 𝑋 ≤ 𝑌 if and only if 𝑋[𝑖] ≤ 𝑌 [𝑖] for all 𝑖 =1,2 , …, 𝑛.
• For example, if 𝑋 = (1, 7, 3, 2) and 𝑌 = (0, 3, 2, 1), then 𝑌 ≤ 𝑋 . In addition,

𝑌 < 𝑋 if 𝑌 ≤ 𝑋 and 𝑌 ≠ 𝑋.
• We can treat each row in the matrices Allocation and Need as vectors and

refer to them as 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 and 𝑁𝑒𝑒𝑑𝑖 .
• The vector 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 specifies the resources currently allocated to thread 𝑇𝑖

; the vector 𝑁𝑒𝑒𝑑𝑖 specifies the additional resources that thread 𝑇𝑖 may still
request to complete its task.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n , respectively. Initialize
Work = Available and Finish [i] = false for i = 0, 1, …, n −1.

2. Find an index i such that both

a. 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] == 𝑓𝑎𝑙𝑠𝑒
b. 𝑁𝑒𝑒𝑑𝑖 ≤ 𝑊𝑜𝑟𝑘

3. If no such i exists, go to step_4.

1. 𝑊𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘 + 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖

2. 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] = 𝑡𝑟𝑢𝑒 Go to step_2.

4. If 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] == 𝑡𝑟𝑢𝑒 for all 𝑖 , then the system is in a safe state.

• This algorithm may require an order of 𝑚×𝑛2 operations to determine whether
a state is safe.

Resource-Request Algorithm for Process 𝑃𝑖

• 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 = request vector for process 𝑇𝑖 . If ${Request}_i [j] = k then
process 𝑇𝑖 wants k instances of resource type R j

1. If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 ≤ 𝑁𝑒𝑒𝑑𝑖 go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

19

2. If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 ≤ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , go to step_3. Otherwise 𝑇𝑖 must wait, since
resources are not available

3. Pretend to allocate requested resources to 𝑇𝑖 by modifying the state as
follows:

• Available = Available – 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 ;
• 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 = 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 ;
• 𝑁𝑒𝑒𝑑𝑖 = 𝑁𝑒𝑒𝑑𝑖 – 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 ;
• If safe –> the resources are allocated to 𝑇𝑖
• If unsafe –> 𝑇𝑖 must wait, and the old resource-allocation state is restored

Example of Banker’ s Algorithm

• 5 processes 𝑃0 through 𝑃4 ;

• 3 resource types: A (10 instances), B (5instances), and C (7 instances)

• Snapshot at specific time is given in the table:

Allocated Max Need Available Need
A B C A B C A B C A B C

T0 0 1 0 7 5 3 3 3 2
T1 2 0 0 3 2 2
T2 3 0 2 9 0 2
T3 2 1 1 2 2 2
T4 0 0 2 4 3 3

Example (Cont.)

• The content of the matrix Need is defined to be Max – Allocation
• The system is in a safe state since the sequence < 𝑇1 , 𝑇3 , 𝑇4 , 𝑇2 , 𝑇0 >

satisfies safety criteria

Need
A B C

T0 7 4 3
T1 1 2 2
T2 6 0 0
T3 0 1 1
T4 4 3 1

Example: 𝑇1 Request (1,0,2)

• Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) –> true
• Executing safety algorithm shows that sequence < 𝑇1 , 𝑇3 , 𝑇4 , 𝑇0 , 𝑇2 >

satisfies safety requirement

20

Allocated Max Need Available Need
A B C A B C A B C A B C

T0 0 1 0 7 5 3 2 3 0 7 4 3
T1 3 0 2 3 2 2 0 2 0
T2 3 0 2 9 0 2 6 0 0
T3 2 1 1 2 2 2 0 1 1
T4 0 0 2 4 3 3 4 3 1

Example

Allocated Max Need Available Need
A B C A B C A B C A B C

T0 0 1 0 7 5 3 2 3 0 7 4 3
T1 3 0 2 3 2 2 0 2 0
T2 3 0 2 9 0 2 6 0 0
T3 2 1 1 2 2 2 0 1 1
T4 0 0 2 4 3 3 4 3 1

Example

• Can request for (3,3,0) by 𝑇4 be granted?

– No

• Can request for (0,2,0) by 𝑇0 be granted?

– Unsafe state

Allocated Max Need Available Need
A B C A B C A B C A B C

T0 0 3 0 7 5 3 2 1 0 7 4 3
T1 3 0 2 3 2 2 0 2 0
T2 3 0 2 9 0 2 6 0 0
T3 2 1 1 2 2 2 0 1 1
T4 0 0 2 4 3 3 4 3 1

21

Example

Example

22

Deadlock Detection

• If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environ-
ment, the system may provide:

– Allow system to enter deadlock state
– An algorithm to recover from the deadlock
– Recovery scheme

Single Instance of Each Resource Type

• A variant of the resource-allocation graph to m aintain wait-for graph

– Nodes are processes
– an edge from 𝑇𝑖 to 𝑇𝑗 in a wait-for graph implies that thread 𝑇𝑖 is waiting

for thread 𝑇𝑗 to release a resource that 𝑇𝑖 needs.
– An edge 𝑇𝑖 → 𝑇𝑗 exists in a wait-for graph if and only if the corresponding

resource-allocation graph contains two edges 𝑇𝑖 → 𝑅𝑞 and 𝑅𝑞 → 𝑇𝑗 for
some resource 𝑅𝑞 .

• To detect deadlocks, the system needs to maintain the wait-for graph and
periodically invoke an algorithm that searches for a cycle in the graph.

• An algorithm to detect a cycle in a graph requires 𝑂(𝑛2) operations, where n
is the number of vertices in the graph.

23

Resource-Allocation Graph and Wait-for Graph

Figure 1: A) Resource-Allocation Graph B) Corresponding wait-for graph

Several Instances of a Resource Type

• The algorithm employs several time-varying data structures that are similar
to those used in the banker’s algorithm

– Available. A vector of length m indicates the number of available resources
of each type.

– Allocation. An 𝑛×𝑚 matrix defines the number of resources of each type
currently allocated to each thread.

– Request. An 𝑛 × 𝑚 matrix indicates the current request of each thread.
If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡[𝑖][𝑗] equals 𝑘 , then thread 𝑇𝑖 is requesting 𝑘 more instances
of resource type 𝑅𝑗 .

• To simplify notation, we again treat the rows in the matrices Allocation and
Request as vectors; we refer to them as 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 .

• The detection algorithm simply investigates every possible allocation sequence
for the threads that remain to be completed.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n , respectively. Initialize
Work = Available . For i = 0, 1, …, n −1, if Allocation i � 0, then Finish [i]
= false . Otherwise, Finish [i] = true .

2. Find an 𝑖𝑛𝑑𝑒𝑥𝑖 such that both

a. 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] == 𝑓𝑎𝑙𝑠𝑒
b. 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑖 ≤ 𝑊𝑜𝑟𝑘 If no such i exists, go to step 4.

3. 𝑊𝑜𝑟𝑘 = 𝑊𝑜𝑟𝑘 + 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] = 𝑡𝑟𝑢𝑒 Go to step 2.

24

4. If 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] == 𝑓𝑎𝑙𝑠𝑒 for some 𝑖, 0 ≤ 𝑖 < 𝑛, then the system is in a deadlocked
state. Moreover, if 𝐹𝑖𝑛𝑖𝑠ℎ[𝑖] == 𝑓𝑎𝑙𝑠𝑒, then thread 𝑇𝑖 is deadlocked.

• This algorithm requires an order of 𝑚 × 𝑛2 operations to detect whether the
system is in a deadlocked state.

Example of Detection Algorithm

• Five processes 𝑃0 through 𝑃4 ; three resource types A (7 instances), B (2
instances), and C (6 instances)

• Snapshot at time 𝑇0 is given and Sequence < 𝑇0 , 𝑇2 , 𝑇3 , 𝑇4 , 𝑇1 > will result
in Finish[i] = true for all i

Allocation Request Available
A B C A B C A B C

T0 0 1 0 0 0 0 0 0 0
T1 2 0 0 2 0 2
T2 3 0 3 0 0 0
T3 2 1 1 1 0 0
T4 0 0 2 0 0 2

Example (Cont.)

• 𝑇2 requests an additional instance of type C
• State of system?
• Can reclaim resources held by process 𝑇0 , but insufficient resources to fulfill

other processes; requests
• Deadlock exists, consisting of processes 𝑇1 , 𝑇2 , 𝑇3 , and 𝑇4

Request
A B C

T0 0 0 0
T1 2 0 2
T2 0 0 1
T3 1 0 0
T4 0 0 2

25

Example (Cont.)

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?
– How many processes will need to be rolled back?

∗ one for each disjoint cycle

• If deadlocks occur frequently, then the detection algorithm should be invoked
frequently.

• Resources allocated to deadlocked threads will be idle until the deadlock can
be broken.

• In addition, the number of threads involved in the deadlock cycle may grow.

Detection-Algorithm Usage

• In the extreme, then, we can invoke the deadlock-detection algorithm every
time a request for allocation cannot be granted immediately.

• If there are many different resource types, one request may create many cycles
in the resource graph, each cycle completed by the most recent request and
“caused” by the one identifiable thread.

• Invoking the deadlock-detection algorithm for every resource request will incur
considerable overhead in computation time.

Detection-Algorithm Usage

• A less expensive alternative is to invoke the algorithm at set intervals, such as
once per hour or whenever CPU utilization drops below 40% percent.

26

• If the detection algorithm is invoked arbitrarily, it may create many cycles
in the resource graph, making it difficult to identify which of the deadlocked
processes caused the issue deadlock

Recovery from Deadlock

• When a detection algorithm determines that a deadlock exists, several alter-
natives are available.

• One possibility is to inform the operator that a deadlock has occurred and to
let the operator deal with the deadlock manually.

• Another possibility is to let the system recover from the deadlock automati-
cally.

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes
• Abort one process at a time until the deadlock cycle is eliminated
• In which order should we choose to abort? The question is basically an eco-

nomic one; we should abort those processes whose termination will incur the
minimum cost.

Recovery from Deadlock: Process Termination

• Unfortunately, the term minimum cost is not a precise one.
• Many factors may affect which process is chosen, including:

1. What the priority of the process is
2. How long the process has computed and how much longer the process

will compute before completing its designated task
3. How many and what types of resources the process has used (for example,

whether the resources are simple to preempt)
4. How many more resources the process needs in order to complete
5. How many processes will need to be terminated

Recovery from Deadlock: Resource Preemption

1. Selecting a victim. As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters as the
number of resources a deadlocked process is holding and the amount of time
the process has thus far consumed.

2. Rollback. Clearly, it cannot continue with its normal execution; it is missing
some needed resource. We must roll back the process to some safe state and
restart it from that state.

27

Recovery from Deadlock: Resource Preemption

3. Starvation. How do we ensure that starvation will not occur? That is, how
can we guarantee that resources will not always be preempted from the same
process?

1. In a system where victim selection is based primarily on cost factors, it
may happen that the same process is always picked as a victim.

2. As a result, this process never completes its designated task, a starvation
situation any practical system must address.

3. Clearly, we must ensure that a process can be picked as a victim only a
(small) finite number of times.

4. The most common solution is to include the number of rollbacks in the
cost factor.

References

• A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts ,
10th Edition; 2018; John Wiley and Sons.

Related Topics

• End of Chapter 8: All Sections: 8.1 - 8.8

28

	Introduction to Deadlock
	System Model
	System Model
	System Model
	Deadlock in Multithreaded Applications
	Deadlock in Multithreaded Applications
	Livelock
	Livelock
	Deadlock Characterization
	Resource-Allocation Graph
	Resource-Allocation Graph (Cont.)
	Resource-Allocation Graph (Cont.)
	Example of a Resource Allocation Graph
	Example of a Resource Allocation Graph
	Resource Allocation Graph With A Deadlock
	Graph With A Cycle But No Deadlock
	Example
	Basic Facts
	Methods for Handling Deadlocks
	Methods for Handling Deadlocks
	Deadlock Prevention
	Deadlock Prevention (Cont.)
	Deadlock Avoidance
	Safe State
	Safe, Unsafe, Deadlock State
	Basic Facts
	Avoidance Algorithms
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Resource-Allocation Graph Scheme
	Resource-Allocation Graph Scheme
	Resource-Allocation Graph
	Unsafe State In Resource-Allocation Graph
	Banker's Algorithm
	Data Structures for the Banker 's Algorithm
	Safety Algorithm
	Resource-Request Algorithm for Process P_i
	Example of Banker' s Algorithm
	Example (Cont.)
	Example: T_1 Request (1,0,2)
	Example
	Example
	Example
	Example
	Deadlock Detection
	Single Instance of Each Resource Type
	Resource-Allocation Graph and Wait-for Graph
	Several Instances of a Resource Type
	Detection Algorithm
	Example of Detection Algorithm
	Example (Cont.)
	Example (Cont.)
	Detection-Algorithm Usage
	Detection-Algorithm Usage
	Detection-Algorithm Usage
	Recovery from Deadlock
	Recovery from Deadlock: Process Termination
	Recovery from Deadlock: Process Termination
	Recovery from Deadlock: Resource Preemption
	Recovery from Deadlock: Resource Preemption
	References
	Related Topics

