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Multiple polylogarithms are (locally) analytic, transcendental functions of several
complex variables which generalize the logarithm Li1(z) =− log(1− z) to
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where n1, . . . ,nd ∈ N. (1)

They have many applications in mathematics but also in physics, where they oc-
cur frequently in computations of Feynman integrals. The algebra of rational lin-
ear combinations of such functions is in general not closed under integration, but
there are special situations (subalgebras) where indeed the integral can itself be ex-
pressed in terms of multiple polylogarithms and their special values. For example,∫
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= ζ (3)− π2
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log(z)−Li1,2(1,−z)−Li3(−z) (2)

with the Riemann zeta value ζ (3) = ∑
∞
k=1 k−3 = Li3(1). We sketch the algorithms

from [1, 2] for symbolic computation of such integrals. These are based on repre-
sentations in terms of hyperlogarithms, a family of iterated integrals of the form
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The necessary condition of linear reducibility will be explained and we present our
Maple implementation HyperInt [2], which has been applied successfully [3, 4] to
compute many (including hitherto unknown) Feynman integrals. It may be useful
in other applications as well, whenever integrals similar in spirit to Eq. (2) occur.
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