
Mapping Techniques for Parallel Evaluation of Chains of Recurrences

Eugene V. Zima *
Dept. of Computational Math. and Cybernetics

Moscow State University
MOSCOW, 119899, Russia

zima@cs.msu.su
Abstract
This paper examines the parallelization of a technique for
speeding up the evaluation of potentially-complex real-valued
functions at a large number of points. The technique being
parallelixed generates a Chain of Recurrences (CR) which
is then used to compute the function incrementally (i.e.) by
using the results of one iteration in calculating the value of
the function in the next iteration). This paper examines
the possibilities for mapping the CR technique onto paral-
lel machines. The factors influencing the choice of mapping
alternatives include efficiency, speedup, and most interest-
ingly, the potential for improved error distributions.
1 Introduction
A common component in the analysis and solution of many
problems, is the iterative evaluation of a function G(x) over a
domain of points. More specifically, given a starting point zo
and an increment h, the evaluation of the function G(x0 +ih)
for i = O,I,,..,n-l occurs frequently in applications such as
plotting graphs of functions, simulations, and signal pro-
cessing applications. Straightforward evaluation of complex
functions may not be adequate due to the cost in terms of
computation time. One way to speed up this process se-
quentially, is to compute the function incrementally, i.e.,
use the results of one iteration in calculating the value of
the function in the next iteration. For example, to compute
the values ezp(0.0ii2 - 0.22)

for z = O , 1 , . . . , n we can construct the chain of recurrences:

fo(2) = 20.3t+l

i = O
- 1) * f l (2 - l), 2 > 0,

ezp(i = O -0.19)
20.3 I

- 1) * ezp(.02), i > O ,

There will be only

two multiplications performed at each step of the loop which
computes fo(i) values:
f0:=1/2; fl:=exp(0.-19)/2-0.3; f2:=exp(0.02); nrite(f0);
for i :=I to n-I do fO:=fO*fl; fl:=fl+fZ; nrite(f0) od;

This approach has been shown to provide substantial re-
ductions in computation time in the sequential case [5].

This paper examines the problem of mapping of this re-
currence technique onto parallel machines. The underlying
approach is the same as in [4], where a chain of recurrences
(system of recurrence relations) for a given function is c-7-
structed.

Work reported herein was supported in part by the RFBR (Rus-
sia) under Grant 95-01-01138aand in part by Grant 512100 from ISF
and Russian Government

+Currently at: Intel Corp., FM5-64, 1900 Prairie City Road, Fol-
som, CA 95630

1063-7133196 $5.00 0 1996 IEEE
Proceedings of IPPS '96

620

Karthi R. Vadivelu t , Thomas L. Casavant
Dept. of Elec. and Comp. Engg.

University of Iowa
Iowa City, IA 52242, USA

Cvadivelu, tomc] @eng . uiowa. edu
Then, instead of evaluating the original function directly,

the evaluation of the function can be reduced to just k addi-
tions and/or multiplications , where IC is the "length" of the
chain of recurrences. This method requires two steps:

Constructing the chains of recurrences.
Evaluation of the function over the set of points using the

The second step, that of computing the function using the
relations is highly parallelizable. However, there exist sev-
eral alternatives for mapping onto parallel machines. The
factors influencing the choice of mapping alternatives in-
clude efficiency, speedup and most interestingly, different
error distributions. The iterative solution using the recur-
rence technique involves a cumulative error effect. By paral-
lelizing appropriately, not only is greater speedup obtained,
but reduced error accumulation can also be gained.

The parallel evaluation of recurrences has been studied
before, but in a more general context, and only using func-
tional parallelism. Methods to determine the degree of par-
allelism present in a recurrence relation, and a method for
exploiting it have been discussed in [IO]. Other approaches
to parallelizing arbitrary recurrences have been studied in
[l], which are similar to the functional-parallel approach
which we describe later. It is useful to note that, several
methods exist [6, 91 to compute a degree k polynomial in
O(log2k) parallel steps. In the case where the polynomial is
to be evaluated in a loop, using a chain of recurrences allows
the evaluation to be performed in O(1) parallel steps.

Our focus is primarily on a variety of mapping tech-
niques ~ both functional and data parallel - which influence
speedup, as well as other properties such as the accumulated
computational error in function evaluation.
2 Chains of Recurrences
Given constants PO,.. . , (o k - - l , a function fk defined over
Nu{O}, and operators 01,. . . , ak equal to either + or *, we
define a Chain of Recurrences (CR) as the set of functions
fo, fl , . . . , fk connected in such a way, that for 0 5

recurrent relations.

< k

Further, to denote the CR above we will use the shorthand

The CR for f o (z) from section 1 can also be rewrltten as
fo(i) = {PO,Ol,Pl, 0 2 , p 2 , . . . O k , f k } (i) . ,

Given a CR {PO, 01, PI , 0 2 , . . . , ~ k - 1 , @k, f k (i) } we call it a

simple CR, if f k (i) is a constant;
pure-sum CR if 0 1 = 0 2 = . . . = ak = +;

'it IS useful to observe, that a simple pure-sum CR of the length
k defines polynomial f o (i) of degree k , and constants ippo,. . . , p k are
nothing more than the table of finite differences of f o (i) taken at the
point i = 0

0 pure-product CR if 0 1 = 0 2 = . . . = @k = *.
The integer k from our ,definition is called the length of the
CR. I t is easy to see that the number of arithmetic opera-
tions needed to compute the next value of a simple CR is
equal to the length of the CR. Therefore, the length of a CR
gives an indication of its evaluation cost.

For a given G(e) ,xo and h, it is possible to construct
a CR Q or an expression with CRs as operands such that
@(i) = G(ZO + i * h). A general algorithm to construct CRs
for a given formula G(z) was considered in [3, 81. This algo-
rithm can be applied to any function. Instead of finding re-
currences for a particular class of function, it automatically
generates a recurrence representation for a wide variety of
common functions in order to obtain more efficient compu-
tational procedures for their evaluation. The algorithm is
based on two main principles:

replacing the trivial subexpression x by the simple recur-
rence {ZO, +, h } on the parse tree of G;
application of operations from expression G(z) to recur-
rences already obtained during end-order traversal of the
parse tree in order to construct CRs which embrace larger
subexpressions of the given original expression

This algorithm uses CR-construction rules given in [8]. Most
of these rules are very simple. For example, given pure-sum
CRs f (i) = z2+1 = (1, +, 1, +, 2}, g(2) = 3*i+2 = (2 , +,3}
and constant c, it is easy to get CRs for f(i)+g(i) and c*f(i):

Since this technique is based on the use of previously
computed values to compute the next value, any computa-
tional error in the previous step will be passed on to the
new value in addition to any error in the current step. In
general, this error is witlhin reasonable limits, but for a large
number of iterations, the error can become significant. This
can be rectified by “refreshing” the recurrence relations, i.e.,
by reinitializing the value of components periodically. If the
refreshing is done over the regular number of points, we find
that this analogous to it well known sequential (and paral-
lel) program transformaition, called “strip-mining/striping”
[7] or “loop unrolling”.

Given F (i) which h.as to be evaluated for i = 1,. . . , n
(this corresponds to the initial “linear” problem), assume
that n = m . q. We can compute the required values using

strip-mining:

striping:

It can be seen that with the original CR technique, the error
is accumulated through n = m . q steps of computation,
but after strip-mining/striping it is accumulated through
no more than m + q steps. Two features can be noted here:

We need not reconstruct CRs to strip-mine/strip compu-

This transformation allows us to exploit both paralleliza-

f (2) + g (i) = (3 , +, 4, +., 2}, c * f (2) = {c, +, c, +, 2c) .

F (j . q + l) , j = 0,. . . , m - 1 ; l = 1 , . . . , q ; or

F ((l - l) . m + j) , j = : I , . . . , m;1=1, ..., 9;

tations and

tion and CR-based improvement of the code.

3 Parallel lmplementaitions
Function evaluation in loops using recurrence relations is
inherently parallelizable. Consider a function G (z) to be
evaluated beginning at z = z o , over a domain of n points
with an increment h. There are two fundamentally different
ways of parallelizing this problem: Functional Parallelism
and Data Parallelism. The linear nature of recurrence rela-
tions gives rise to functional parallelism. If a function can

be expressed as a CR of length k , it follows that the evalua-
tion of the function will require k steps. Since each of these
steps is independent (from the linear nature of the CR) the
evaluation can be performed in parallel. Data parallelism
arises from the fact that given p processors, the domain of n
evaluation points can be divided into p sub-domains which
can then he mapped to a parallel computer in two ways:
small increments and large increments .

The following function will be considered to illustrate the
three cases.
f(z. = , (~ ~ 1 4 + ~ 3 ~ 3 + ~ z ~ z + o i ~ + ~ o)

a 2 = -1111
2 b 3 2 3 + b 2 1 2 + b 1 2 + b o , where a0 = 1, a1 = 190 1

480 , a3 = %,a4 = -A, bo 1 l , b l = b - -2%
84 1 - 5 0 4 ’

b 3 = $.
Currently, the CRs are constructed using a procedure

implemented in Maple [2], which generates a symbolic rep-
resentation of the CR. Using the symbolic representation,
the chain of recurrences for each sub-domain can be com-
puted b substituting the appropriate values of xo and 1% in
the symgolic representation, thus eliminating the need to re-
compute the recurrences for each sub-domain. The symbolic
representation of the CR for this function is:

e (a 4 (hr; + e 3 (2 0 + ! 3)) + a 3 e 3 + o z e i + a i 1 ~)

2 (6 3 e 3 + b 2 e i + b i h)
{ . f (. o) , * ?

e (a 4 (2 h e 3 + ~ 2 (” o + 2 h)) + a 3 e 2 + 2 0 2 h Z)

2 (b 3 e 2 + 2 b 2 h 2)
1 * >

1 (z ra4h4)
,(a4 (3 h e , + s h 3 (~ , + 3 h)) + 6 ~ , h 3)

1 * I e
2 (6 b 3 h 3)

1 *,

where, e l = h i o + h(zo + h) , e2 = 2 h e l + 2 h 2 (z 0 + 2h) , e 3 =
1 8 ~ 2 + e l (z o + h)

Functional Parallel Evaluation. The function f(z)
defined above has a CR of length 4 , and thus requires 4
steps to evaluate each iteration. Given 4 processors, each
of these 4 operations may be executed in parallel. This
requires synchronization at each iteration, which combined
with the communication latencies may not yield an accept-
able level of efficiency in the case of this function since the
CR has a length of only 4. This method of parallelizing can
be combined with the methods described below by having
4 processors per subsequence perform the 4 operations in
parallel, in addition to each subsequence being performed
in a data-parallel fashion.

Strip-mining. Parallelizing using the strip-mining im-
plies that we calculate the initial recurrence relations for the
p sub-domains first. The starting values for each of the re-
currence relation for each processor would be 20 + h (j - I):,
where j is the number of processor, and each processor would
compute n /p values over the step h. For the above ex-
pression, calculating the CR produces a chain of length 4,
with, 0 1 = 0 2 = 0 3 = 0 4 = *. Thus the computation
of each successive value requires 4 multiplications, and uses
the value obtained from the previous computation as the
starting point.

Due to the fact that each processor computes a smaller
sequence than in the sequential case, the peak accumulated
error will be much less that in the sequential case.

Str iping. Here again the domain of n values is divided
into p sub-domains, but unlike t,he previous case, the sub-
domains are interleaved. The starting points of the p sets of
recurrence relations would then be, xo + h (j - l), where j
is the number of processor and each processor would com-
pute n / p values over the step H = hp. The accumulated
error in each subsequence is much smaller than tlhe total
accumulated error, had the entire sequence been calculated
sequentially. In this case though, the shape of the error
curve should be different from the previous case, since, due

62 1

to the interleaving, all the subsequences terminate in the
same region of the overall sequence.

sus the sequential CR evaluation, and then between the two
parallel increment methods being described in this paper.

v - _ -
4 Experimental Results
In this section, empirical data is presented that illustrates
and confirms the ideas and claims outlined in the previous
sections.
Error Characteristics

A number of different types of functions were evaluated
using both the small and large increment methods. The er-
ror characteristics have been compared and plotted. The

Figure 5 compares the small increment parallel evalua-
tion method to the sequential CR evaluation method, and it
can be seen that the difference is dramatic. Figure 6 shows
the difference in the error characteristics between the two
forms of parallel evaluation based on increments. As shown,
the small increment method has a significant advantage over
the large increment one for this function. This behavior is
discussed

functions considered can be divided into two primary cate-
gories: those yielding CRs in which all the operators are ad-
ditions (p u r e - s u n CRs) and those yielding CRs in which all
the operators are multiplications (pure-product CRs). The
error characteristics of both types are studied in the follow-
ing subsections. The results were measured on a SPARCsta-
tion SLC, implemented in C. The CRs for the functions were
generated using a Maple-based implementation. The error
characteristics have been compared based on the following
criterion:

e Type of function
e Mapping method used

Pure-product CR Example
The example function is the same as the function of sec-

tion 3. Figure 1 shows percentage error characteristics ver-
sus iteration number in the evaluation of the example func-
tion using three different techniques:
e 1. Direct evaluation,
e 2. Small increment method, and
e 3. Large increment method.

I
x
I n
0 100 200 300 400 500 600 700 800 900 1000

-4 ' Y I
0 100 200 300 400 500 600 700 800 900 1000

in-'

1

'0 100 200 300 400 500 600 700 800 900 1000

Figure 1: Percent Error with (a) Sequential CR Evaluation
(b) Small Increments (c) Large Increments

The domain of x was [0, lo], and was partitioned into
1000 points with h = 0.01. As predicted, the errors show
a dramatic decrease when evaluated using either the small
or large increment techniques. Over the range of points
evaluated, Figure 1 shows the error improvement to be from
three up to four orders of magnitude over the sequential CR
solution.

Figures 5 and 6 give a perspective on the improved error
performance by first using one of the increment methods ver-

1.5

Small Increments

+ L 0 , 5 1

-1.51

-2 t

0
Small Increments

W O

8
$-0.5-

1 -

a

-1.5 - Sequential Evaluation

-2 -

200 400 600 800 1000
-2.5'

Iteration Number -->

Figure 2 : Comparison of percent errors with (a) Sequential
Evaluation(b) Small Increments [Pure Product CR]

2

1.5

1

0.5

0

Small Increments

200 400 600 800 1000
-0.5'

Figure 3: Comparison of percent errors with (a) Small
crements (b) Large Increments [Pure Product CR]

In-

Pure-sum CR Example

ple polynomial shown below:
The function used to illustrate pure sum CRs is the sim-

f(.) = 25 - 1sc4 - 1 i X 3 - 1 9 2 - 3. + 2

this function yields a pure sum CR of length 5 . To evaluate
this function, the domain of x was [O , l O] , and was parti-
tioned into 1000 points with h = 0.01.
Discussion of Error Characteristics

The errors in function evaluation using CRs could arise
due to two sources: 1) Computation Error (Floating point
error that occurs when we compute the initial values of the

x 1 o-=
1 I

Sequential Evaluation \k 1 , Small Increments

200 400 600 800 I000
Iteration Number -->

-60

Figure 4: Comparison of percent errors with (a) Sequential
Evaluation(b) Small Increments [Pure Sum CR]

LA
200 400 600 800 1000

Iteration Number -->
-60

Figure 5: Comparison of percent errors with (a) Small In-
crements (b) Large Increments [Pure Sum CR]

constants), and 2) Representation Error (Error caused by
loss of information due to the finite word size). Typically
when we compare the function’s values from evaluation using
CRs with normal straightforward evaluation, the error of
representation will affect both quantities. Thus it is the error
of initialization that plays a crucial role in causing the value
obtained using CRs to be different from the value obtained
through straightforward evaluation. Since successive values
are computed using past values of the components of the
CR, the nature of the function also plays an important part
in the progression of the error.

Let’s consider a simple pure-sum CR
@(4 = {(Po, +, (Plr +, . . ‘ i +, (P k H i)

qz) = {Go, +,81,+, . . . , + , G k } (i) ,

and the approximate simple pure-sum CR

obtained after floating point initialization of @ (z) . Let CT
be an upper bound for the relative error of initialization
(we assume that U << 1). The value of U depends on the
concrete floating point representation. I t can be shown (see
[Ill for details) that I&(;) - @(i)l 5 U . r (i) . maxl l (~ ~ 1 ,

where r(i) = (1, +,I,+, . . . ,+, l } (i) .

The function r(i) is defined by the following formula

P
k + i times

where i(’) = i(i - 1) . . . (z - j + 1) is j - th falling factorial.
In the case of a function having a pure sum CR, the above
equations show that the error I&(i) - @(;)I does not depend
upon the value of the function @(i) . Thus this means that
both the large increment and the small increment methods
will have the same error characteristics. This is borne out
by the empirical results plotted in figure 5.

Consider simple pure-product CR
@(i) = {(Po,*,cPlr*,’ . ’ ,* , ’Pk)

W j = {Go, *, G l , *’ . . . , *, @ k } (i) ,
and the approximate simple pure-product CR

obtained after initialization of @(i). It is easy to show, that
16 - @I 5 uJ?(i)@(z). The last means, that error depends
on current value of the function, multiplied by F (i) and by
initialization error U. That’s why in the case of the pure
product CR, we find a difference in accumulated error be-
havior with respect to the different mapping schemes.
Parallel Performance Results

The timing results shown in Tables 1 and 2 are presented
to show the potential for speeding up the parallel imple-
mentation of the CR method, and for further improving the
performance of evaluating a function over a large domain
of values. The data shown in Table 1 were collected on a
96-processor Intel Paragon at ETH-Zurich, and the function
of Section 3 was evaluated over a domain, 2, of [O, lo), and
was partitioned into n + 1 points, with h = 10/n. The re-
sults in Table 2 were taken with the same conditions as for
the Paragon, but on a 26-Processor Sequent Balance sys-
tem at Kent State University. The following 6 versions were
implemented.

e 1. D.S: direct sequential evaluation.
0 2. C.S: sequential evaluation using CRs.
0 3. C.F: functional Parallel method. This evaluation

involved creating a large-grained pipeline among the k-
stages of the CR and passing data between processors
after each step of the CR evaluation.
4. D.P: direct evaluation of the function in parallel, by
dividing the domain [0,10] into 10 sub-domains.
5. C.DP: data-parallel evaluation of the function using
CRs, by dividing the domain [0,10] into 10 sub-domains.

e 6. C.FD: parallel evaluation of the function using CRs,
by a hybrid of methods 3 and 5 above.

Cases 1 - 5 of the previous 6 cases were implemented
on both systems. Case C.FD was only implemented on
the Paragon. For all cases except cases C.F and C.FD,
10 processors were used. In case C.F, because the func-
tion being evaluated had a CR of the length 4, only four
processors were used. In case C.FD, 40 processors were
used with 10 being employed for the sub-domains, and 4
processors for each sub-domain. As can be seen from the
Tables, the best choice of method is highly dependent on
the number of available processors, and upon the number
of points (Le., the resolution over the interval) to be evalu-
ated. First, examining the execution times for the Paragon
shown in Table 1, it can be seen in cases D.S and C.S, that
there is a linear increase in execution time as the problem
instance grows. This is to be expected due to the linear time
complexity of the evaluation of a function, either directly,

623

n C.F I D.P I C.DP 1 C.FD]

Table 1: Execution times of example function on a
Paragon(in sec.) Problem size in thousands.

Table 2: Execution times of example function on a Sequent
Balance(in sec.) Problem size in thousands.

or using CRs. Considering case C.F, the functional-parallel
case, note that this case performs worse than for either of
the sequential cases. While this may seem very discouraging
at first sight, it is actually quite to be expected. The grain
size of the computation per processor, compared to the com-
munication per computation step, is very small. Therefore.
much more time is being spent in communication than is be-
ing gained through the parallelism, which is only 4 proces-
sors. In case D.P, the data-parallel implementation of the
direct method, a significant (roughly 7 times) improvement
is shown over the direct sequential method (D.S), but no-
tice that for all problem sizes examined, that the execution
time exceeds that of the sequential CR method (C.S). This
is potentially disturbing, because it might be hoped that
the benefit from parallelism might dwarf the expected im-
provement from a sequential algorithm enhancement alone.
However, it should be noticed that the example function is
very complex, and that direct evaluation, even at a paral-
lelism of width 10, might not be expected to do better than
the reduction gained through the 4 multiply-add operations
as required by the CR technique. In examining case C.DP
then, the data-parallel increment-based CR method, we be-
gin to see the more subtle trade-offs involved in using CRs
on parallel machines. Note that for smaller values of n, the
performance of case C.DP, is about the same as for case
D.P, but slightly worse than for case C.F. However, note
that as n increases past 1000, the disadvantage compared to
case C.F disappears, and the growth in execution time re-
mains very low as compared to either case C.F or D.P. The
reason here again is related to grain size of the computation
compared with communication. Obviously, the data-parallel
CR technique is able to be mapped on to very fine-grained
machines, but for a system such as the Intel Paragon, the
grain size required due to the large ratio of communication
to computation speed of the machine, is quite large. Thus,
for smaller values of n , the technique is not preferred over
techniques C.F or D.P, but for large values, the amount of
computation as compared to communication for case C.DP
allows it to accommodate larger and larger problems, while
only suffering a very slow rate of growth in execution time.
Finally, in case C.FD, the hybrid of Data and Functional
Parallel solutions, it can be seen that for smaller values of
n, the technique compares favorably with all of the paral-
lel cases in an absolute sense, but when considering that 40

processors are being used, the efficiency is not as attractive.
In fact, as n continues to grow, the technique begins to suffer
badly, as was that case with the purely functional parallel
case (C.F). However, such a method might be considered
useful for cases of small to moderate values of n , in which
there are an ample supply of processors available.

In considering the execution timings for the Sequent as
shown in Table 2, many of the observations are similar to
those for the Paragon, but with a few differences. Case
D.P, the parallel direct method, shows similar behavior to
the Paragon, with somewhat worse performance for smaller
values of R , but better values and slower growth than the
D.S case. Similarly, for case C .DP, note the relatively slow
rate of growth of execution times compared to both cases
C.F and D.P, especially as n becomes larger ’.
S u ni mar y

Evaluation of functions using CRs can be more efficient
than direct evaluation of functions. The error associated
with the CR method can be significantly reduced when the
function is evaluated in parallel using CRs. The two data
parallel mapping techniques discussed each result in dramat-
ically reduced errors although having different error distri-
butions. This is an excellent example of a situation where
parallel evaluation techniques result in significant improve-
ments in solution quality, in addition to reduced execution
times.

References

[I] Huang A.J . and Z. George Mou. Parallel partition expansion
for the solution of arbitrary recurrences. In Proc. ICPP ‘92.
CRC Press, 1992.

121 Char B.W., Geddes K . 0 , et al. Maple-V Language Refereme
Manual. Springer Verlag, 1991.

[3] Zima E.V. .4utomatic construct,ion of systems of recurrence
relations. Journal o f Computational Mathematics and Math-
ematical Physics, 24(6):193-197, 1984.

[4] Zima E.V. Recurrent relations technique to vectorize function
evaluationin loops. In Proc. PARCELLA ’94, pages 161 ~ 168,
Potsdam,Germany, 1994. Akademie Verlag.

[5] Bachniann O. , Wang P.S., ZimaE.V. Chains of Recurrences-
a method to expedite the evaluatioii of closed-form functions.
Proc. ISSAC’Y4, Oxford, UK, July 1994, ACM Press, pp. 242-
249.

[6] Feilmeier M. Systems f o r Parallel Processing (Russian, trans-
lation). Mir, Moscow, 1985.

[7] Wolfe M. High Performance Compilers f o r Parallel Gomput-
ing. Addison-Wesley, Redwood City, 1996.

[8] Zima E.V. Simplification and Optimization Transformations
of Chains of Recurrences. in the Proceedings of ISSAC’95,
Montreal, Canada, ACM Press, 42-50.

[9] Hockney R. and Jesshope C. Parallel Computers: Architec-
ture, Programming and Algorithms. Adam Hilger, Philadel-
phia, 1988.

[lo] Karp R.M., Miller R.E, and Winograd S . The organization
of computations for uniform recurrence equations. J A CM,

[ll] Casavant T., Vadivelu K., Zima E. Mapping Techniques for
Parallel Evaluation o f Chains of Recurrences, Tech. report,
ECE Dept, Univ. of Iowa.

*14(3):563 ~ 590, 1967.

’Observe, that in both cases D.P and C.DP include initialization
overheads of about 0 4 seconds

624

