MATRIX FORM OF POLYNOMIAL REPRESENTATION
ORIENTED TOWARDS FAST PARALLEL REAL ROOT
ISOLATION

EUGENE V. ZIMA
Symbolic Computation Group
University of Waterloo
Waterloo, Ontario, Canada
ezima@daisy.uwaterloo.ca

ABSTRACT

The problem of parallelization of the well known
family of algorithms to isolate polynomials’ real roots is
considered. Known complexity of sequential and par-
allel algorithms is O(n®L(nd)?) where n is the degree
of the given polynomial, d is the maximum of abso-
lute values of coefficients and L(v) is the bit length
of an arbitrary precision integer v. It is shown that
with matrix form of polynomials’ representation it is
possible to achieve complexity O(n*L(nd)?). Combin-
ing this representation with some advanced sequential
algorithm lets to derive a method of the complexity

O(n3L(nd)).

KEYWORDS parallel processing, root isolation,
fast shift.

1 INTRODUCTION

Polynomial root isolation is very important task for
many applications ([10]). There exist a number of al-
gorithms for solving this problem [6]. Most of them
are based on coeflicients sign variation method or
Descartes’ rule of signs. The best sequential complex-
ity of these algorithms is O(n®L(nd)?), where n is the
degree of the given polynomial, d is the maximum of
absolute values of coefficients and L(v) is the bit length
of an arbitrary precision integer v.

Several approaches to the parallelization of real
root isolation algorithms are described in [3, 9, 7).
However these approaches are based on multithreading
and do not promise speed-up gained from parallelism
bigger than n. In fact the complexity of the parallel
algorithm proposed in [3] is not better than sequential
one. In this paper we will consider an approach to the
parallelization of the sign variation method to isolate
real roots of polynomials. It can be easily combined
with the approach from [3] and with techniques which
in some steps of computations uses floating point arith-
metic instead of exact one [7]. Our approach is based
on the special matrix form of polynomial representa-

tion. Basic algorithms and representation proposed
here are suitable for SIMD or array (including recon-
figurable arrays) parallel architecture.

In section 2 we proceed with basic notions and def-
initions. In section 3 we consider the set of SIMD-like
parallel operations needed to describe the solution of
the problem. In section 4 we propose matrix form of
polynomials representation and describe main opera-
tions for root isolation algorithms in terms of this rep-
resentation together with complexity analysis (in the
number of ring operations and in the number of bit
operations). Section 5 summarizes theoretical results
of the paper and describes possible future work.

2 PRELIMINARIES

Let
f(z) =anz™ +...+ a1z +ag (1)

be a univariate integral polynomial, I be an interval
which contains some roots of the polynomial and we
need to compute disjoint intervals in I such that each
interval contains exactly one real root of (1). Denote

...n |ai|, and L(u) to be the bit-length of
an integer u (L(nm) = L(n)+ L(m), L(n™) = mL(n)).
We assume throughout this paper that f(z) has only
single roots (i.e., that square free factorization proce-
dure ([5]) has been already applied to the polynomial).
Let

g(z) = bpz™ + ...+ b1z + bo.

Algorithms to isolate real roots ([3, 9, 4]) are based on
exact arithmetic and use the following three polynomi-
als transformations as basics:

1. coefficients scaling”, Hy /s : f(z) — g(z), where
g(z) =2"f(z/2), i.e. by =a;2" 7", i=0,1,...,n.

2. ”polynomial shift (translation) by 17, Ty
f(z) — g(z), where g(z) = f(z + 1), i.e.

bi:Zak<i>, 1i=0,1,...,n. (2)

k=i

3. ”inversion”, R : f(z) — g(z), where g(z) =
" f(1/z), i.e. by = an_4,i=0,1,..., 7.

A trace of an algorithm to isolate real roots can
be represented by binary tree [3, 7] where each node
corresponds to a recursive call of the algorithm. With
each node of the tree a polynomial and an interval are
associated. The root of the tree corresponds to the ini-
tial polynomial f(z) and interval I. If f(z) has exactly
one root on this interval (or does not have any roots
at all), algorithms stops. Otherwise, transformations
H, 5 and T are used in order to construct the children
of the root with polynomials Hy/5(f(z)) and T1(f(z))
and intervals Iy (left half of I) and I (right half of
I). Then algorithm has to be applied recursively to
these nodes. The decision procedure (which checks at
each node how many roots correspondent polynomial
has in correspondent interval) uses transformations Ty
and R. It looks on the number of sign variations in the
sequence of coeflicients of the polynomial Ty (R(f(z)).
This means, that at each inner node at least two trans-
lations, one inverse and one scaling have to be per-
formed.

It’s easy to see that at each node the complexity of
the translation dominates the complexity of any trans-
formation. For example, if we count the complexity in
the number of ring operations and consider sequential
model of computations, we have O(n?) as the com-
plexity of translation and O(n) as the complexity of
the inverse and scaling in the root node. If we count
complexity as the number of bit operations, we have
even bigger difference: e.g., O(n®+n?L(d)) is the com-
plexity of the translation, O(nL(d)) is the complexity
of the inverse.

In the case of parallel computations [3] the situa-
tion remains the same, since parallelization technique
used there is based on the parallel performing of trans-
formations on each level of the tree. Therefore, the
speed-up obtained can not be higher then the average
width of the tree, which is known to be less then n.
Moreover, parallel complexity reported in [3, 7] is even
the same as the best sequential complexity. It can
be explained by the fact, that the Horner scheme of
quadratic complexity to perform T; transformation is
hard to parallelize because of data dependencies. That
is why for example algorithm from [9] uses n processes
to parallelize straightforward formula (2), which is of
cubic complexity.

The complexity of the any algorithm considered
here can be estimated from the trace tree described
above. One of the factor implying complexity is the
growth of coefficients size with the increase of the num-
ber of the level of the tree. If we start with polyno-
mial f(z) with certain value of L(d), the length of the
largest coeflicient of polynomials at level [is dominated

by 2nl + L(d).

Another factor implying the total comlpexity of
the algorithm is the height of the trace tree, which
is dominated by nL(nd) [3]. Some algorithms (for ex-
ample [4]) use transformation T¢ : f(z) — g(z), where
g(z) = f(z + ¢),e¢ > 1 instead of Ty on the stage of
children construction. It often lets one to decrease the
height of the tree. However the transformation itself
is more complicated then Tj. Straightforward formula
for coefficients of the polynomial g(z) = Te(f(z)) looks

like
b Y <k>’“—" i =0,1,...,n
T ag| . J)c , T=U,1,..., 7.

The goal of this paper is to reduce the amount of
work at each node of the tree with the help of the spe-
cial form of polynomial representation. In this form it
will be possible to exploit inner parallelizm of transfor-
mations 71 and Hy/; and to avoid performing of the
transformation R at all. One of the main features of
this representation is that algorithms to perform all
transformations mentioned above are easy to imple-
ment. This representation requires some preliminary
work before the start of real root isolation algorithm.
However, the complexity of this work is reasonably
small, and the work itself uses the same set of par-
allel tools as isolating algorithm. Bit-wise complexity
of algorithm to isolate real roots of polynomials in this
representation is O(n*L(nd)?), or O(n®*L(nd)) if the
technique from [7] is used. The complexity counted in
the number of ring operations is O(nlognL(nd)).

3 Basic SIMD operations

An usual dense representation of g-variate polyno-
mial f(z1,...,z4) is g-dimensional array of coefficients.
Considering basic SIMD-like operations on such ar-
rays we will suppose that each entry of such an ar-
ray is located in separate processor element (PE)
and neighbors entries are located in neighbors PEs.

Given a g-dimensional array s[0..n1,...,0..ny] and i €
{31, ...,1q}, we will use the following operations as ba-
sic:

e LeftShift;(s) shifts an array s one component
to the left in the 7 direction (here ”left” means
towards decreasing 7);

e RightShift,(s) shifts an array s one component
to the right in the 4 direction (here "right” means
towards increasing i);

o s|i—; denotes the (¢ — 1)-dimensional sub-array
of the array s obtained by fixing the value of the
index ¢ = 7, where 0 < 5 < n;;

e F(j)|i=j denotes the g-dimensional array of the
same shape as s, whose elements for + = 7 and
for any value of other indexes i1, ..., 14 are equal
to F(5).

Observe that every operation like shifting, computing
sli=j or e.g., (j + 1)|i=;, corresponds to a single paral-
lel instruction on a SIMD machine and takes constant
time ! (of course under assumption that we do have
enough PEs).

Additionally we consider binary parallel operations
as basic. Let s and u be g-dimensional arrays of the
same shape. Further we will use

e s+ u — component-wise addition of s and u;
e sk u —component-wise multiplication of s and u;
e u := s — component-wise assignment.

As usually for SIMD computations we assume that ar-
rays of the same shape are mapped to the same set of
PEs, i.e. entries u[i1,..., 4] and s[i1,..., 1] for fixed
11,...,1%¢ are located in the same PE. That is why bi-
nary operations on these arrays take constant time.

Using operations above we can compose more com-
plex expressions. For example,

wi= (29)]i,2) * (3)

can be rewritten for explanation sequentially as
for all i€ {i1,...,iq}&i #12 do
for j:=0,1,...,n2 do
U[il,j, i37 cey Zq] =27 % S[ilaja i37 ey Zq]
od
od
This explanations contains loops, but parallel complex-
ity of the assignment (3) is constant and consists of the
following three steps:

1. temporary parallel variable of the same shape as
s is assigned by values (27)];,=;,

2. parallel multiplication of this variable and s,
3. parallel assignment of the result to u.

Let s be as before a ¢-dimensional array, u be a
(¢ — 1)-dimensional array, and 7 € {i1,...,4;}. A bit
more complicated operations needed further are

e ReduceAdd;(s), which returns (¢—1)-dimensional

array
n;

> slizs

j=0

e CopySpread, (), which returns g-dimensional ar-
ray obtained by creating and spreading n; + 1
copies of u along axis 3.

Both operations need O(logn;) parallel steps ([2, 8]).

1We assume here that the complexity is counted in the num-
ber of ring operations.

4 Matrix representation of poly-
nomials for real root isolation

Given a polynomial f(z) of the form (1) we will use
in the solution of the problem the following one and
two-dimensional arrays:

1. vector a[0..n] of coeflicients of f(z);

2. temporary matrix A[0..n,0..n] such that A;; =
a;,1=0,1,...,n;7 = 0,1,...n; this matrix can
be easily obtained from array a with the help of
the parallel assignment A := CopySpread,(a);

3. vector H[0..n] such that H, = 2"7' 4 =
0,1,...,n; this vector can be easily obtained with
the help of parallel assignment H := 2" 77 |;_;;

4. e matrix T[0..n,0..n] such that T;; = (;),

1=0,1,...,n;7 = 0,1,...n (we assume as
usually that (;) = 0 for ¢ < j); it is easy
to see that this matrix represents Pascal’s
triangle and contains all the binomial coef-
ficients from the formula (2).

¢ matrix 7"[0..n, 0..n] such that T}, = ("]_’),
1=0,1,...,n;7=0,1,...n (the same Pas-

cal’s triangle but with inverse layout)

Simple parallel algorithm to construct these two
matrices is

T:=0;7":=0;7T[0,0] := 1; T"[n, 0] := 1;
for k:=1 to n do
Tli:k =
T|i:k—1 + RightShiftj (T|,’:k_1);
T'izn—t :=Tl|i=
od

Now we can define all transformations associated
with each node of the trace tree in terms of these struc-
tures;

trl) Hyjo(f(z)) : H x a3

tr2) T1(f(z)) : ReduceAdd;(CopySpread,(a) * T);

tr3) T1(R(f(z))) : ReduceAdd;(CopySpread;(a) *
).

Let’s now estimate the amount of work at each
node of the level I of the trace tree. The size (bit-
length) of entries of a at the level ! is dominated by
2nl + L(d). Entries of H are not changing during the
algorithm run, and the size of entries of H is domi-
nated by n. The same concerns to the size of entries
of T and T'. Knowing this we can write down worst
case bounds for complexity of transformations trl-tr3.
The complexity of trl is dominated by (2nl + L(d))
(because multiplication by 27~¢ can be performed as
the bit-wise shift). Complexity of CopySpread in tr2 is
dominated by log n(2nl+L(d)), complexity of multipli-
cation is dominated by n(2nl + L(d)) and complexity

of ReduceAdd is dominated by logn(2n(l + 1) + L(d)).
Since we avoid performing coeflicients inverse in tr3,
the same estimations take place for complexity of tr3.
Summarizing all above (taking into account that L(d)
is a constant) we have the following estimation for the
amount of work at the node on level I: O(n?l). Hence,
total complexity of the algorithm is

nL(nd)
O(nzl) = O(n4L(nd)2).
=0

If we count complexity in the number of ring opera-
tions we have O(1) for trl, O(logn) for tr2-tr3 and
complexity of algorithm is O(nlognL(nd)).

5 CONCLUSION

The purpose of this paper is to show that it is pos-
sible to have speed-up of the algorithms to isolate
real roots of polynomials gained from SIMD-like paral-
lelism. We can proceed even better if we combine exact
and floating point arithmetic as in [7]. An approach
presented in [7] advises to use exact arithmetic for trl-
tr2 and floating point arithmetic for tr3. In [11] we de-
scribed the representation of polynomials oriented to-
wards fast parallel polynomial shift, which allows us to
perform T in O(1) ring parallel operations (O(nlogn)
bit operations) if T; is applied to the polynomial re-
peatedly. Unfortunately, applying R to a polynomial
destroys this representation, and we are loosing the
speed gained because of reconstruction of this repre-
sentation. However Hy o does not destroy this repre-
sentation, which means that trl-tr2 can be performed
with complexity O(nlogn) as in [11] and tr3 can be
performed with complexity O(n?). It will lead to the
total complexity of real root isolation O(n3L(nd)).

Possible future work in this direction includes some
experimental implementation of real root isolation
algorithms with representation described above and
comparison with other implementations. It seems to
be promising to get more advantages from parallelism
on the level of implementation of arbitrary precision
integer arithmetic, because applications which come
from mechanics deal with polynomials of very high de-
gree.

References

[1] S.G. Akl. The Design and Analysis of Parallel Algo-
rithms. Prentice Hall, Englewood Cliffs, New Jersey
07632, 1989.

[2] C* users guide. Thinking Machine Co., 1992.

[3] G. Collins, J. Johnson, W. Kiichlin. Parallel real root
isolation using sign variation method. In R.Zippel,
editor, Computer Algebra and Parallelism, pages 71—
78. Springer Verlag, LNCS 584, 1992.

[4]

[10]

[11]

G. Collins, A.Akritas Polynomial real root isolation
using Descartes’ rule of signs. In ACM SSAC, pages
272-275, 1976. ACM Press.

J. Davenport, Y. Siret, E. Tournier. Calcul formel.
Masson, 1987.

J. Johnson. Algorithms for Polynomial Real Root Iso-
lation. Technical research report OSU-CISRC-8/91-
TR21 of the Ohio State University, 1991.

J. Johnson., W. Krandick. Polynomial Real Root Iso-
lation using Approximate Arithmetic. In ISSAC’97,
pages 225-232, Maui, Hawaii, July 1997. ACM Press.
W. Koch. Efficient Reduce and Scan Functions
for Mesh-Connected SIMD Computers. In PAR-
CELLA’96, pages 174-183, Berlin, Germany, 1996.
Akademie Verlag.

W. Krandick. Isolierung reeller nullstellen von poly-
nomen. In J.Herzberger, editor, Wissenschaftliches
Rechnen, pages 105-154. Akademie Verlag, Berlin,
1995.

W. Krandick. Parallel Polynomial Real Root Isola-
tion. 3rd International IMACS Conference on Ap-
plications of Computer Algebra, Maui, Hawaii, July
1997.

E. Zima. Fast parallel computation of the polynomial
shift. In IPPS’97, Geneva, Switzerland, April 1997.
ACM Press.

