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ABSTRACT 
Backward and mixed chains of recurrences are introduced. 
A complete set of chains of recurrences manipulation tools is 
described. Applications of these tools, related to the safety 
and numeric stability of chained computations are given. 

1. INTRODUCTION 
The chains of recurrences (CR) technique to expedite func- 
tion evaluation over regular intervals was introduced in [12]. 
Algorithms to construct and interpret linear, two-dimensio- 
nal and multi-dimensional chains of recurrences have been 
considered in [2, 3, 4, 9, 12, 14] together with implementa- 
tions within different computer algebra systems (CAS) and 
as standalone C and Java libraries. It was shown in [14] 
that the CR-based representation of expressions is a canon- 
ical representation of polynomials and rational functions. 

We briefly recall the main idea behind the CR-technique in 
the univariate case along with an introduction of backward 
chains of recurrences. Let F(i )  be a closed form function 
which we need to compute for i -- 0, 1 , . . . ,  n (assume that  
F(i )  is defined for all these values of the argument i). The 
CR-method is based on the conversion of F(i )  into a faster 
scheme ¢(i) ,  i = 0, 1 , . . . ,  n, which involves chains of recur- 
rences of the form 

f j ( i )  = { ~oj, if i = 0, 
f j ( i  - 1) ®j+l f j+ l ( i  - 1), if i > 0, (1) 

j = O , l , . . . , k - 1 ,  

where ~oo,... ,~o~-1 are constant expressions, ®j E {+,*},  
j = 1 , . . . ,  k and fk ( i )  is a closed form function which can ei- 
ther be a constant expression or be defined via other chains. 
For example, 

F(i)  = i ! ( n -  i)i i = 0,1, 
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can be represented by a CR 

1, i f i = O ,  
f o ( i ) =  f o ( i - 1 ) * f l ( i - - 1 ) ,  i f i > O ,  

where ft (i) is an expression with two other CRs as operands 
(CR-expression) f l  (i) = g(i ) /h( i ) :  

1, i f i = O ,  
g(i) = g ( i - 1 )  + l ,  if i > 0 ,  

n, if i = 0, 
h(i) = h ( i - 1 )  + ( - 1 ) ,  if i > 0 ,  

For chains (1) we use the linear notation 

f o ( i )  -= q~(i) ---- {~o0, C)I, ~Ol, C)2, ~02, • . • C)k, fk  } ( i )  (2) 

and recursively write operands of f k ( i )  (if it is not constant) 
in linear form. Therefore, CR for F(i )  above can be written 
as  

{1, + ,  1} " 'c (I)(i) ---- {1, * ,  {~-, _tU ,----i-) t t ), (3) 

and F(i )  = ~( i ) ,  i = O, 1, . . . , n. 

It is clear that problems of the form "compute F ( x )  for 
x = a, a + h, a + 2h, . . . "  (typical for plotting or numeric 
integration) can be easily reformulated in the form "com- 
pute F(i)  for i --- 0, 1, 2, ..." after substi tuting a + ih for x 
in F.  That  is why we will keep the simplest formulation of 
the problem in this paper. We also do not specify (unless it 
is necessary) the computational domain (Z, l~, C, Zp,. . .  ), 
because all the results hold without loss of generality for any 
commutative ring. 

CR-based evaluation yields algebraically the same result as 
a straightforward evaluation of the original formula. How- 
ever, depending on the arithmetic in use, natural concerns 
about results of evaluation arise. 
E x a c t  a r i t h m e t i c :  although ~(i)  = F(i) ,  i = 0 , . . . ,  n (and 
therefore is defined for all values of i), some of the subchains 
of the CR • (i.e. some fj (i) from (1)) could be undefined 
at the last several points of evaluation. This can happen 
because CR (1) is based on forward differences (quotients), 
which involves at the last evaluation points values of F(i )  
for i > n, and those values (or their quotients) are not guar- 
anteed to be defined in advance. 
F l o a t i n g  p o i n t  a r i t h m e t i c :  since the CR technique is 
based on the use of previously computed values to compute 
the next value, any computational error in the previous step 
will be passed on to the new value in addition to any error 
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in the current step, i.e. the i terative computat ions using the 
CR. technique possess a cumulative error effect. 

The goal of this paper  is to extend CR-technique by chains 
of recurrences based on backward differences (quotients), 
also by mixed (forward/backward) chains and to define a 
complete toolkit  of CR-manipulations.  Another  goal is to 
demonstra te  tha t  the CR-representation is self-contained: 
since both CR-construction and CR-interpretat ion (as it will 
be shown) are based on the same algebraic tools, one does 
not  need to change this representation in order to analyze, 
for example, the numeric stabil i ty of CR-computations.  I t  
is enough to use CR simplification properties in order to 
obtain the result of such analysis. 

The section "Tabulating polynomial values" in [10] gives a 
caution on the accumulation of rounding errors when a ta-  
ble of finite differences (CR) is used for the evaluation of 
polynomial  values. However it does not indicate the accu- 
mulative error effect quantitatively. On the other hand, very 
pessimistic bounds for the accumulated error of CR-based 
polynomial  evaluation are given in [4] and repeated in [6]. 
These bounds involve the degree of the evaluated polynomial 
(because of mistakes in reasoning). We will show tha t  the 
accumulated error does not depend on the degree, which 
means tha t  the numeric stabil i ty of CR-based polynomial 
evaluation is much bet ter  than it was previously thought.  

The rest of the  paper  is organized as follows. In section 
2 we introduce backward and mixed chains of recurrences 
and s tudy their properties related to the safety of computa-  
tions. Section 3 is devoted to the analysis of numeric stabil-  
ity of chains of recurrences. Section 4 contains concluding 
remarks. 

2. FORWARD, BACKWARD AND MIXED 
CHAINS AND THEIR PROPERTIES 

For chains of recurrences (CR) of the form (1) we use the 
linear notat ion (2) and call by UR-expression an expression 
with CRs of the form (1) as elementary operands. The CP~ 
¢I'r = {~or ,O,+l ,~o~+l , . . .®k,f~},  (0 < r < k) is called an 
r-order subchain of the CR e2. The CR (1) of length k is 
called simple if fk is a constant and pure-sum or polynomial 
(respectively pure-product or exponentia 0 if @j = + , j  = 
1 , . . . , k  (Oj = * , j  = 1 , . . . , k ) .  For example, the function 
F(i) = i s, i = 0, 1 , . . .  is defined by the pure-sum simple CR 
¢ ( i )  = {0, d- , 1, d- , 6, + , 6} of length 3. When it is conve- 
nient we use the notat ion ~ = {~o0,O1,Ol} instead of (2), 
dropping also (i) if it does not lead to misunderstandings. 

The definition of backward chains of recurrences (BURs) al- 
most exactly repeats the definition of CRs [14]. Given a 
constant ~oo, a function f l  defined over N U {0}, and an op- 
erator O equal to either + or *, we can consider a first-order 
recurrence 

{ ~ o ,  if i = 0, 
fo(i) = fo( i - -1)  Ofx(i) ,  i f i  > 0, (4) 

which is called a Base Backward Recurrence (BBR) and is 
denoted by f0 = (~o, O, f l )  in linear form. 

Given constants ~ o , . . . , ~ k - 1 ,  a function fk defined over 
NU{O}, and operators ® t , . . . ,  0~ equal to either + or *, we 

recursively define a Backward Chain of Recurrences (BUR) 
as the set of functions fo, f l , . . . ,  f ~ - l ,  f~ connected in such 
a way, tha t  for 0 _< j < k 

(i) = ~ ~oj, if i = O, f~ f j ( i - -1 )  Oj+lf j+l(i) ,  i f i  > 0. (5) ( 

Further,  to denote the  BCR (5), we will use the shor thand 
notat ion fo(i) = ¢ ( i )  = (~oo, O1, ~al, 02,  ~a2,... Ok, fk). 
Such terms as length of the  BCR, simple BCR, pure-sum 
(or pure-product) BCR, r-order subchain, BUR-expression 
and so on, are similar to those for CRs. For example, the  
function F(i) = ia,i = 0, 1 , . . .  can be defined by the pure- 
sum simple BCR. ~( i )  = {0, + , 1, d- , - 6 ,  + , 6) of length 3. 
Note, tha t  simple BUR of length 1 defines the same function 
as simple CR of length 1 when their elements are equal: 
(~0, o, ~1)(i) - {~o, o, ~1}(i). 

2.1 Chains manipulation toolkit 
The operators V (value) and E (shift with respect to i: 
E(g(i)) = 9(i + 1)) form the basic toolkit  for interpreta-  
t ion of CR(BCK)-expressions: 

c, if • is a constant expression c; 
V ( ¢ )  = ~oo, i f  cI, = {~00,(~1,¢I}1} or ¢ = ( ~ o o , ® 1 , 0 1 ) ;  

p(v(~Cl)) , . . . ,  v(~C~))), 
if • = p ( o O ) , . . . ,  ~(-~)); 

c, if ff~ is a constant  expression c; 
{~o o l  v(¢1), o l ,  E(~l)}, 

if • = {~o0,O1, ¢1}; 
E(¢) = <voOi V(E(¢l)) ,Ol ,E(~l)) ,  

if ~ = (~0,O1,~1);  
P(E(O0) ) , . . . ,  E(O("~))), 

if (~ = P ( O O ) , . . . ,  O('~)). 
Note the  difference in the  shifting of a CR and a BCR: for 
a BCR • the subchain #1 has to be shifted before its value 
is used to produce the result of E ( ¢ ) .  This difference in the 
shifting is the  reason of differences in features of computa-  
tional schemes based on CRs and BCRs. 

Given a closed form function F ( i ) , i  = 0, 1 , . . . ,  n, after ob- 
taining its CR(BCR)-representat ion ¢ ( i )  the values of F(i) 
are generated by V ( E i ( ~ ) ) ,  i = 0 , 1 , . . . ,  n. This leads to the 
following s tandard  interpretat ion scheme: 

Initialize (~) ; 

V ( ~ )  ; 
for i:= 1 to n do 

: =E(~)  ; 
v (~)  

od; 
Here I n i t i a l i z e  (¢ )  initializes the components of ~. The 
function V ( ¢ )  returns the value of F(i), and ¢ : = E ( ¢ )  up- 
dates the CR-expression for the next evaluation point. Ob- 
serve that  the above loop has n i terations instead of n + 1. 
This is the  nature  of CR-computat ions:  the value of F(0)  = 
¢(0)  is available as the  result of CR-construction. 

The number of operations to be performed at each step 
of the above loop is called the Cost Index (CI) of a CR- 
expression q) and is defined as: 
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0, if • is a constant; 
k + C I ( f a ) ,  i f ¢  = {~Po,®~,~, •. • ,®~, f~} 

CI (O)  = ,~ or • = (~oo, ®1, ~o~,..., ®~, A ) ;  

q + E C I ( ¢ , ) ,  if • = P((Ih, O 2 , . . . ,  O,~). 
j----1 

Here q is the number of operations in the expression P .  The 
cost index of a CR-expression • gives an indication of its 
evaluation cost (it counts the number of operations needed 
to compute V(E(O)) ) .  For example, for a simple CR • the 
cost index is equal to the length of the  CR. For the CR- 
expression (3) C I ( O )  = 4. 

The application of the inverse shift operator E -1 ( E -  l g( i) = 
g(i  - 1)) to CR-expressions is defined as follows: 

c, if • is a constant expression c; 
{qoo (Dr I V(E-~(O1) ) ,®I ,  E - ' ( O 1 ) } ,  

if • = {~0, ®1, (Ih}; 
E - I ( O )  = (qoo (D~ -I V(O1),®~, E-I((I)~)),  

if • = (~oo, ®1, O1); 
p ( E - I ( O 0 ) ) ,  . . . , E - I ( O ( " ) )  ), 

if • = P(O(1) , . . .  ,O( 'O).  

Here + -1 denotes subtraction and * -~ denotes division. 
I t  is easy to find a symmetry  in the definition of E and E-1  
for C1% and BCR-expressions: an inverse shift acts on a BCR 
in the same manner as a shift acts on a C1%, and vice versa. 

2 . 2  C h a i n s  s i m p l i f i c a t i o n  a n d  i n t e r p r e t a t i o n  
Elementary subexpressions of F( i )  are constants or simple 
pure-sum CRs for variable i: {0, + ,  1}. Conversion of F( i )  
into CR-expression O(i) is based on algebraic operations 
(simplifications) defined for CRs. We list some simplifica- 
tions which will be used further (here c is a constant): 

s l  : c +  { ~ o , +  , o l }  = {c + ~ o , +  , o l }  

s~ : c{~o, + ,  ~ i }  = { ~ o ,  + ,  ~o,} 

& :  ~{~o,* ,¢1} = {c~o,* ,Ol} 

S4 : c{~o,+ ,*~} = {c ~°, * ,c*~} 
s~ : { ~ o , +  , o l }  + { ¢ 0 , +  , ~ }  = {~o + ¢ , +  , o l  + ~ I }  

& :  {~o, * ,  o~} • / { ¢ o , * ,  ~ }  = {~o * /¢o ,  * ,  o l  • / ~ 1 }  
s~ : {~o ,+  ,o~} • { ¢ 0 , +  ,~1} = 

= {~0"  ¢ 0 , +  , 0 ~ 1  + O1E(~)}  

Most of the CR-simplification rules from [14] (or from $1 - 
$7) turn into BCR-simplification rules by subst i tut ing ( and 
) in place of { and }. For example, 
e* (~o ,+  , o i )  = ( c ,  ~o, + , ~ ,  o i ) ,  
(~o, + ,  o~) + (¢o, + ,  ~1) = (~o+¢0,  + ,  o ~ + ~ ) ,  
c<~O,+ ,~> = (c ~o, • , c*~), 
and so on. There are only two rules where CR and BCR 
construction are different. Only in these rules forward (resp. 
backward) nature of the CRs (resp. BCR) is apparent.  Let 
O(i) = {qoo, + , O~(i)} and ff2(i) = {¢0, + ,  ~1(i)} be two 
CRs. Then 

o(i)  • ,I,(i) = {~o¢0, + ,  o ( i )v l ( i )  + o l (1)E(e( i ) )}  

where E is the shift operator. Now let O(i) = (~o, + , Ol( i))  
and ~( i )  = ( ¢ o , +  , ~1(i)) be two BCRs. Then 

~( i )  * ~ ( i )  = (~o¢o, + , O ( i ) ~  (i) + 01 ( i ) E - l ( ~ ( i ) ) )  

where E -1 is the inverse shift operator.  The rules to con- 
struct  the CR (BCR) for {~o, * , O1(i)} ( ¢ ° ' +  ,~1(i)} 

(resp. for <~o, * , 01(i))  (¢° '+  ,~,,(i)) ) differ in the same way. 

R e m a r k .  Observe tha t  when we construct BCRs by means 
of the rules above we will not encounter problems with ap- 
plications of E -1,  because this operator  will be applied only 
to pure-sum BCRs. 

In other parts  the construction of BCRs looks exactly as the 
algorithm Cl~ake described in [14]. Given the closed form 
function F( i ) ,  which we need to compute for i = 0, 1 , . . . ,  
this algorithm replaces occurrences of i by BCR {0, + , 1), 
applies BCR.-simplification rules recursively and returns the 
BCR-expression O(i) of the  same Cost Index as Cl~ake does. 

The tight relationship between CR-simplifications and CR- 
interpretat ion is best  seen for a simple pure-sum CR 

O ( i )  : {~00, -}- , ~O1, -9 l- . . . .  , ~Ok_l ,  -3[- , ~Ok} , 

which defines a polynomial of degree k with the set ~o0, ~Ol, 
• .. , ~k of finite differences at  i = 0. Using the definition of 
E and CR-simplifications we can write 

E ( ¢ ( i ) )  = 

= { ~ O 0 , - ~ ,  ~01,'J[ - , . . . , ~ k - - 1 ,  ~ -  , (~k}'~- 

+ {~1, + . . . .  , ~k-1, + ,  ~k} = 

= ¢(i) + ¢1(0,  
(6) 

where ¢1(i)  is first-order subchain of ~( i) .  Similarly for a 
simple pure-sum BCR 

O ( i )  = (~00, "J[- , ~ 1 ,  "~ , . . . ,  ~Ok--1, -~- , (~k) ,  

which defines a polynomial of degree k with the set ~o, ~1, 
. . . ,  ~ok of backward finite differences at  i = 0, using the 
definition of E and BCR-simplifications we can write 

E(O( i ) )  = 

= (~o + ~1 + . . .  + ~ k , +  ,~ol +~o~ + . . .  + ~ k , +  , . . .  

• . . ,~ok- t  + ~ k , +  ,~k)  = 

= (~0, + ,  ~1, + . . . .  , ~ - 1 ,  + ,  ~ ) +  (7) 
"~" (~O1, "~- , . . - ,  qOk-- l , ' -~  , ~ k )  @ - - .  

• .. + (~k-1, + , ~ )  + ( ~ )  = 

= o(i)  + ol ( i )  + o~(i) + . . .  + o~_l(i)  + ¢~(i), 

where Oi(i  ) is j th -order  subchain of O(i). This gives a 
connection between chains interpretat ion and simplification 
which will be used in section 3. 

2 .3  S a f e t y  o f  c h a i n e d  c o m p u t a t i o n s  
Here we will give an example which shows why the BCR- 
representation might be preferred to the CR-representation. 
We first introduce another useful measure of a CR-expression 
which is called the effective length and is defned recursively 
as follows: 

0, if • is a constant expression c; 
1 + e l (01) ,  if ¢ = {~o, ®1, ¢1}; 

~z(~)= m~(~z(~(~)),...,~1(~(~))), 
if @ = P((I) (1) . . . . .  ¢( '~)). 

347 



Informally, el(tip) is the length of the longest path  (counted 
in the number of chain operations (Dj) from the root of CR- 
expression • to the last component of any subchain found 
in ~. This value gives two impor tant  characteristics of com- 
putat ional  scheme based on Cl~-expression ~: the size of 
the potentially unsafe region at the end of computations,  
and the size of the longest "error-accumulation" chain in the 
computat ion of ~( i )  which will be used for estimating a pri- 
ori error-bounds in section 3. 

Suppose we are to compute values of F(i)  -- ~']~k=o f (k )  for 
kl(~-k)! 

i = 0 , 1 , . . . , n ,  where f (k )  ---- ~: . The values F(i)  are 
defined by a CR: 

1 , ,  {2,-5 ,1} 
(I) = (1 , -5  , n ' {n ---i__-5" ,--1} }(i)" 

The s tandard scheme of interpretat ion will compute a se- 
quence of values V((I,), V(E((~)) ,  V(E2((I , ) ) , . . .  Note tha t  

E " - : ( ~ ) = { c ~ , - 5  f~,* {n+1,-t-,1},.,., 
{0,+ 

for some rational constants ~ and /L  Application of the  shift 
operator to E ~ - I ( ~ )  will fail because of division by 0: 

E ~ ( f f ) = ( ~ + l g , - 5 , f ~ .  n + l  , { n + 2 , - 5 , 1 }  
o ' ' ( - 1 , ¥  

although (~ + f~) is correct value of F(n).  

As we mentioned before, although F(i) is defined for all 
values of i, some subchains or subexpressions of (~ can be 
undefined at several last evaluation points. The region i = 
0, 1 , . . . ,  n -e l (~I , )  is absolutely safe for computing the values 
F(i)  using the general CR.-interpretation scheme. Computa-  
tions at points i = n - el((I,) + 1 , . . . ,  n should be organized 
in such a way which avoids the evaluation of unnecessary 
(thus potentially undefined) values. This can be achieved at 
the  stage of program generation simply by split t ing compu- 
tat ions into two loops: for i = 0, 1 , . . . , n  - e l (C)  and for 
i = n - e l ( ¢ ) + l , . . . ,  n, unfolding the second one and getting 
rid of unnecessary computations.  If the CR-representation 
is being interpreted, the s tandard  interpretat ion scheme has 
to undergo similar t ransformation (it has to consist of two 
loops, where the second loop implements "careful" interpre- 
tat ion of a CR-expression: dropping .all subchains of the 
order n - i after i - th iteration). 

The number of i terations to split can be reduced if instead 
of e l ( c )  we use the longest pa th  from the root of CR- 
expression to potentially "dangerous" operation in CR-re- 
presentation (such as division, tan, cot or log function calls 
and so far). In our example it would be sufficient to split 
just  one iteration, although e l ( ~ )  = 3. In such case we still 
have some unnecessary computat ions at the end of the loop, 
but  they do not lead to division by zero. 

Now, let us consider BCR-based evaluation of the same val- 
ues. Values F(i) can be defined by BCR 

(0, + ,  1) 
= <1,-5 ,1 ,*  ' ( n 7 i _ - 5 "  , -1>  )(i)" 

Standard  scheme of interpretat ion will compute sequence of 
values V ( ~ ) ,  V ( E ( ~ ) ) ,  V ( E ~ ( ~ ) ) , . . .  flawlessly. The ex- 
planation of this fact is very simple. Because of symmetries 

between CRs and BCRs, some subchains or subexpressions 
of ~l, can be undefined at several first evaluation points. To 
cure this we would need to split several first i terations from 
the s tandard  interpretat ion loop. In this part icular  exam- 
ple it  suffices to split one iteration, but  this spli t t ing (of the 
first iterations) is always done due to the nature of chained 
computations.  

Generally, BCRs allow us not to worry about  the end of the 
evaluation interval: a t t empts  to compute  undefined values 
can be made only at the s tar t ing points i = 0, 1, ..., e l ( ~ ) - I  
of the loop when computing the values of BCR-expression 
• (i). This is important ,  because an a t t empt  to compute  un- 
defined values will happen now during the BCl%-construction 
(if construction is done numerically). The BCR-construct ion 
procedure can t rap such event and dynamical ly  split  the first 
step of the interpretat ion loop generating the loop for E(q,)  
(or E2(~) )  instead t. This means tha t  at  the end of the  
BCR-construction we will have a safe computat ional  scheme 
and the BCR-interpreter  would not need to take special care 
about  the last evaluation points, which generally makes in- 
terpreter  simpler and faster. 

2.4 Properties of polynomial chains 
As it was shown in [3], there exists simple relationship be- 
tween simple pure-sum CRs and falling factorial powers ([7]) 
i£ = i ( i -  1 ) . . .  (i - j  + 1). For BCRs there exists simple rela- 
t ionship between simple pure-sum BCRs and rising factorial 
powers ([7]) i 7 = i(i + 1 ) . . .  (i + j -- 1). The following equal- 
ities hold 

( o , +  , 0 , +  , . . , 0 , + ,  k!}, 

t imes 
i ~ =  ( 0 , +  , 0 , +  , . . . , 0 , + ,  k!). 

Y 
t imes 

From which we derive using rules $1-$7 
~k .k 

{ ~ 0 ,  "[- , <Pl , - - -  , "[- ,qOk} = qtgO + ~lil-- + . • • + -~-.i z-- ---- 

~- ~0 -~ ~O1 "~ ~O2 2 "~ . . .  "~ ~k  

and 

,%61,...,-5 ,¢~) = %bo + %bli Y + . . .  + ~ i  F = (¢o, -5 

The last equation means tha t  a simple pure-sum BCR of 
length k is a polynomial of degree k in i. 

From (8) and i - 1  j [  1 : k + l  ~-~j=0 = ~ - -  we obtain 

i--1 
= 

5=0 (10) 

= {0,-~- , ~O0,'gff , ~ 1 , - . .  ,"~- , ~ k } ( i )  

or ~ ' - o  ~(J)  = {0, + ,  (I,}(i) for simple pure-sum CR (I,. 

1more precisely, for Em(~2), where m < el(k9) is the dis- 
tance in the number of chained operations from the root 
of BCR expression to the subexpression which caused the 
event. 
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• r - . , , i - -1  . k  1 p , , - - l ( , , . k - ] - l l  Similarly, from (9) and 2_~j=0 ) = K4-~-- ~' ! we obtain 

i--1 

X~(~o0, -]-,  ~ol , . . . ,  -}-, Vk)(J) = (11) 
j = 0  

= E-l((0,  + ,  ~o, + ,  ~ , . . . ,  + ,  ~ ) ( i ) )  

or ~-~i.- ~ ¢ ( j )  = E-1  ((0, - t - ,  ¢ ) ( i ) )  for simple pure-sum BCR 
¢.  T~ese formulae are respectively CR and BCR analogs of 
summation formula for polynomials. 

R e m a r k .  The relationship between pure-sum CRs and 
BCRs is even tighter. Consider, for example, the function 
i ~ which is defined by a CR {~0, + , ~ 1 , . . . ,  ~ok-1,-{- , ~k}. 
Writ ing the same function as a BCR gives 

( ( -1) '~Po,- t -  , ( - 1 ) ' ~ - I~a l , . - . ,  ( - -1 )1~ /~ - -1 , -J r -  , (P/~). 

This follows from the above equations and from the following 
conversion formulae between powers (see [7]): 

i k = i t = ( - 1 )  k-y i~-, 
j = 0  

where {~}, j  = 0 , . . . , k  are the second kind Stirling num- 
bers. 

With  the help of equations (8),(9) we define two special poly- 
nomials which will be used in section 3: 

Ak(i)  = {1,-[- ,  1, + , . . . ,  1 , - [ - ,  1}(i) 

k t i ne s  

and 

Bk(i) = ( 1 , - [ - , 1 , + , . . . ,  1 , - { - ,  1)(i) .  

k t i n e s  

(12) 

(13) 

Observe, that  Ak (i) _< Bk (i) for all natural  k and i and that  

.A~(i) < Bk(i)  (14) 

for all k > 2, i > 1. Furthermore, lc(.Ak(i))  = lc(Bk(i)) ,  
therefore for any fixed k 

lim /~k (i) ~-¢¢ A k ( i )  ---- 1. (15) 

2.5  L o o p  o p t i m i z a t i o n  too l s  a n d  m i x e d  c h a i n s  
The operators V, E and E -1 and the C R / B C R  simplifica- 
tion rules form a toolkit for loop optimization [6, 13]. Con- 
sider the following loop: 

z := g(0) ; 
f o r  i : = 1 r o n d o  

y := f ( x ) ;  . . .  x :=g( i ) ;  . . .  z : = h ( x ) ;  . . .  
od 

After constructing a CR ¢( i )  = g(i) one can t ry  to use the 
chained nature of the values of x, subst i tute ¢ ( i )  in place 
of x into f ( x )  and h(x) ,  and obtain the CR representation 
for these expressions with the help of CR-simplifications. In 
order to preserve the semantics of the loop one has to substi- 
tute  ¢( i )  into h(x)  and E - l ( ¢ ( i ) )  into f ( x ) .  The reasonable 
question about the existence of E -1 (¢( i ) )  arises here. I t  is 
easy to see for example that  for ¢ defined in (3) E -1 (¢( i ) )  
is not defined at  i = 0 because of division by zero. This 

does not mean that  the optimization connected with substi- 
tut ion can not be performed for g(i) = ¢ ( i )  from (3). I t  is 
still possible by simply spli t t ing the first s tep of the  loop, 
and applying substi tut ion to the body of the shortened loop. 
This will be valid, because the loop without the first s tep 
computes values of E ( ¢ ( i ) )  and now E - I ( E ( ¢ ( i ) ) )  ---- ¢ ( i )  is 
defined. Such a split t ing is not necessary in the cases when 
g(i) is defined by a simple CR ¢( i ) .  It  is easy to show [13] 
tha t  in such a case either E - 1 ( ¢ ( i ) )  is defined, or the  loop 
degenerates (computes x ---- 0 for most of the values of i). 

Sometimes the loop already implements some chained eval- 
uations rules, and they can have either forward or backward 
nature.  In order to handle such situations properly we need 
C R / B C R  conversion tools, which are defined as follows 

c, if ¢ is a constant expression c; 
(~o, ®1, CRtoBCR(E- 1 (~1))), 

CRtoBCR(~) = if ¢ = {~oo, ®1, ¢1}; 
P(CRtoBCR(¢(D), . . . ,  CRtoBCl~(¢(~))), 

if ¢ = p(¢(1)  . . . .  , ¢(m)). 
and 

c, if ¢ is a constant expression c; 
{~0, (~1, BCRtoCR(E(¢I))}, 

BCRtoCR(¢) = if ¢ = (~o, Q1, ¢1);  
P(BCRtoCR(¢ (1) ) , . . . ,  BCRtoCR(¢ (m))), 

if ¢ = p ( ¢ O )  . . . .  ,¢(m)).  
During the CR-based loop optimization we have different 
choices: 
1) convert all computat ions to forward chains; 
2) convert all computations to backward chains; 
3) preserve as much of the loop semantics (in part icular  
chains already existing within a loop) as possible. 
The first two goals are achieved with the help of conversion 
tools, subst i tut ions and C R / B C R  simplifications. The third 
goal leads to the  consideration of mixed chains of the form 
{1/)0, * , ~)1, ~-  , ( ¢ 2 ,  ~-  , {~)3, "~ , . . . , - ~ -  , ~ )k})} ,  
with different orders of (,) and {, } brackets. Computat ions  
based on mixed chains of recurrences have the same general 
scheme of interpretation.  Moreover, the operators V,  E and 
E -1 were defined to allow mixed chains as input. Part ia l  
conversion might also be needed during mixed chains sim- 
plification, for example for simplification of an expression of 
the form {~oo, + , ¢1} + (¢o,-}- , ~1). Consider for example 
the following loop: 
x : = 0 ;  t l : = O ;  y ' = O ;  
f o r  i := l t o n d o  

x : = x + 2 ;  ( 0 , + , 2 )  
t l  : = t l + x ;  ( 0 , + , 0 , - ] - , 2 )  
t2 := 4.  t l .  (4. t l  + x) -- x 4 ; (0, -t- , 16, -[-,  --192, - t - ,  240) 
y := y + t2; (0, -{-, 0, -{- , 16, -~ ,  --192, - t - ,  240) 

od 
This loop is annotated by BCRs which were constructed for 
x and then by substi tutions and simplifications for other 
variables. If  the only variable used after the loop is y, we 
would have optimizied loop performing only 4 additions at 
each iteration. We constructed BCRs because the first two 
assignments in the loop already implement a BCR-like com- 
putations.  If the  order of these two assignments was differ- 
ent, we would end up with mixed CR/BCR. scheme, imple- 
menting evaluation of t2 with a CR and evaluation of y with 
a mixed chain. 

R e m a r k .  The need for mixed computat ions can also appear  
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because BCRs have some disadvantages in comparison with 
CRs with regard to numeric stability. A skillful choice of the 
mixed scheme could keep advantages of CR-representat ion 
with regard to stabil i ty and advantages of BCR-representa- 
t ion with regard to "avoiding unsafe computat ional  steps." 
Returning to the  example in section 2.3 we can define F(i) 
by the mixed chain 

{i, + , 1} , ,  ' i ' ,  A ---- (1, --[- ,{1,* , ( ' ~ , ~  ,---~}))( ) 

which gives a safe scheme of computations,  and most of com- 
putat ions are based on forward chains. 

3. STABILITY OF CR-COMPUTATIONS 
Since the CR-technique is based on the use of previously 
computed values to compute the next value, any computa-  
tional numeric error in the previous steps will be passed on 
to the new value in addit ion to any error in the current step. 
In general, this error is within reasonable limits, but  for a 
large number of iterations, the error can become significant. 
In this section we first analyze the propagated error and 
then show an approach to improve the error characteristics 
of CR computations.  

3.1 Error analysis for simple CRs 
The errors in function evaluation using CRs could arise due 
to several sources: 
1) representation error (error caused by loss of information 
at the t ime of initialization due to the finite word size); 
2) CR-computat ion error (floating point roundoff error tha t  
occurs when we compute the successive values of the  simple 
CRs contained in CR-expression (I)(i)); 
3) "usual" error (the error of evaluation of the operations 
from initial expression F(i) which remain in the CR-expres- 
sion obtained by F(i)) and so on. 
We will be interested mostly in the characterization of the 
relative errors and will use the s tandard model [8], assuming 
tha t  representation error of exact quanti ty v is defined by 

f l (v)  = v(l + 6), 161 < u, 

and floating point operations roundoff error is defined by 

fl(t ® v) = (t ® v)(1 + 6), 161 < ~, e e {+, - , , , / } ,  
where u is a hardware dependent  unit of roundoff. We also 
assume in this section tha t  i5 << 1 and k5 << 1. 

We first show how representation error influences the CR- 
computat ion error under the assumption that  ar i thmetic  is 
exact. Consider a simple pure-sum CR 

¢(i)  = (~0, + ,  ~1, + , . . . ,  + ,  ~A( i )  

and the approximate simple pure-sum CR 

¢(~) = {~o,+ ,~1,+ , . . .  , + ,  ~A(i), 

obtained after floating point initialization of ~.  Using the 
model mentioned above and CR-simplification rules from 
section 2 we can write 

~(~) = 
: {~o(1 - l - 6 ) ,+  ,~o1(1 + 6 ) , +  , . . . , +  ,~k(1 + 6 ) } ( i )  = 

---- (1 --b 6){cpo,-{- , ~oz,-{- , . . . ,  -[-- , (p,'~ } ( i )  = ( I  -'F 6)~(i), 

or @(i) - ¢(i)  = 6~(i). 

The last equali ty suggests tha t  if ari thmetic is exact then 
pure-sum CR evaluation is numerically stable with respect 
to small per turbat ions  in values of elements ~ j  of a CR. 

Consider now a simple pure-product  CR 

¢(i)  = {~0 ,* ,  ~1, * , . . .  , * ,  ~}(~)  

and the approximate  simple pure-product  CR 

@(i) = {~o,* ,~1,*  , . . . , * ,  ~}(~) ,  

obtained after initialization of (I,. Wi th  previous assump- 
tions and ~j  > 0 we get ~Sj = (1 + 6)~oj,j = 0, 1, ...k. Using 
CR-simplification rules we can rewrite 

(~(i) - (I)(i) -- {1 -I- 5, * , . . . ,  1 + 5, * / 1  -F 5}¢(i)  - (I)(i) ---- 

k t~mes 

= ((1 + 6) Ak(0 -- 1)(I)(i). 

Since $ <( 1 we deduce (1 + 6 )  `%(0 _~ 1 +SAc(i) and finally 
get (~ - (I) _~ $Ak(i)~(i). 

This means tha t  pure-product  CR evaluation is unstable,  
since relative error grows proport ionally to the  values of 
polynomial .Ak(i) when i increases. 

Now we describe the  influence of roundoff error at  every step 
of CR-computat ions.  Let (I) be an exact pure-sum CR and 

denotes the  shift in floating point environment. Then, 
using (6) twice we get 

E(¢I)) = fl((I) + (I)1) = ((I) + fPl)(1 + 6) = E((I))(1 + 6). 

Evaluation of a CR (~ over consecutive i points corresponds 
to the evaluation o f / ~ ¢ .  Noting tha t  E and E commute 
under the s tandard  floating point model, we have 

k ' ( ~ )  ---- E ' - ' ( E ( ~ ) ( 1  + 5)) ---- (1 + 5)E(E'- ' (¢))  . . . .  

. . . .  (1 + $)'E'(~). 

From here we get 

~: i(¢)  _ E ' ( ~ )  ----. iSE'(~), (16) 

which means tha t  relative error grows linearly in the number 
of evaluation points i. This is more optimistic than [4] which 
suggests tha t  the relative error accumulates proport ional ly 
to i • k • 6 for polynomial CR of length k. Formula (16) 
can also be used to est imate absolute error behavior in case 
when ~i((~) is close to 0 (i.e. when relative error analysis 
can not be used). 

Observe tha t  the  analysis above estimates worst case accu- 
mulation when all roundings are done in the same direction. 
In real life floating point environment the accumulated er- 
ror grows much slower. I t  is interesting to note also tha t  
the accumulated error for high degree polynomials can be 
less than  tha t  for low degree polynomials. Figure 1 shows 
the result of an experimental  evaluation of two polynomials 
over 10000 points: f(x) ---- x a / l l  and g(x) = xT/l10000 for 
x = 0 .0 ,0 .001, . . . ,10 .0  (note that  f(10) = g(10)). Com- 
putat ion was performed in Maple's hardware floating point 
environment and the figure shows the accumulated relative 
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5e'141 / : /  

4e'141 ,/'f 

F i g u r e  1: A b s o l u t e  v a l u e  o f  r e l a t i v e  e r r o r  o v e r  1 0 0 0 0  
e v a l u a t i o n  p o i n t s  f or  f(x) ( l i g h t )  a n d  g(x) ( d a r k ) .  

error for both  polynomials against the number of the eval- 
uation point. Although both curves are under the line 6 • i, 
g(x) has a smaller accumulated error at the end point. 

This somewhat surprising fact has a very simple explana- 
tion. In real life floating point environment rounding is 
done in different directions and accumulated errors in longer 
chains have bet ter  chances for mutual  cancellation than in 
shorter chains. 

Now consider a pure-product  CR • of length k. Then 

J~(~)) = f l (¢  * ¢1 ) = ( ~  * ¢1) (1  + 6)-4k (,) = E(¢ ) (1  + 6) A~ C0. 

After i steps of evaluation 

E/(O) = / ~ ' - 1 ( E ( ~ ) ( 1  + 5) -4~c')) = 

= (1 + 5)-4~(~)E(/~-t (~)) = . . .  
i .4 " . . . .  ( 1 + ~ ) ~ = ~  ~ 0 ) . E ' ( ~ )  

6 i • and (since (1 + 6)E~ --~ "%(J) ~ 1 + )"~q=t Ak(3) for 6 << 1) 

ki(~) - Ei(~) ~-- Ck(i)6Ei(¢), 

where Ck(i) = ~ = t  Ak(j) = { 0 , +  , 1 , + , . . . , 1 , + 2 1 }  is a 

tithes 
polynomial of degree k + 1 in i. The function Ck (i) describes 
the cumulative error effect in pure-product  chains. 

We summarize this section by a description of the "express" 
method of getting a priori worst case bounds for accumu- 
lation of relative error for CR-expressions. Given a CR- 
expression ~( i )  we define the error indicator to be 

2;~(i) = { i, if • has no pure-product  subchains, 
Cel(~ ) (i), if • has pure-product  subchains. 

(17) 
The value ~Zv(i) roughly describes the accumulation of the 
relative error after i steps. 

All the reasonings of this subsection can be repeated for 
exponential BCRs by substi tut ion Bk from (13) in place of 
.4~. Obvious disadvantages of BCRs in comparison with 
CRs here follow immediately from (14). But due to (15) 

the difference in accumulated error in exponential CRs and 
BCRs for the same expressions becomes less significant as i 
grows. For polynomial BCRs this difference is even less sig- 
nificant. Similarly to the way we obtained (16) it is possible 
to show tha t  for a polynomial  BCR ~ of length k 

E ( ~ )  -- E ( ~ )  + ~E~(~)  

and 

k ' ( ~ )  Ei(~I,) ~ ~(i + ~E'(¢1)) 
E ' ( ~ )  - E i ( 9 )  " 

Here iEi(~Pl) is a polynomial of the degree k with the lead- 
ing coefficient k times larger than  the leading coefficient of 
E ' ( ~ ) .  If computed values are not close to 0 (i.e., relative 
error analysis is relevant) the  last fraction above is bounded 
by a constant on the evaluation interval. This means tha t  
the relative error accumulation for a polynomial BCR will 
be very close to the one for CR. Running BCR evaluation 
for f(x) and g(x) shown in Figure 1 gives the same result as 
CR evaluation. 

3.2 I m p r o v e m e n t  o f  the  error characteris t ic  o f  
the C R s  

As shown in the previous subsection, for a large number of 
iterations the cumulative error effect of the CR-computa-  
tions can become significant. I t  is not surprising, since we 
t rade off accuracy for efficiency when we pass from the initial 
computat ional  scheme F(i) to the  CR-expression ~( i ) .  I t  
looks quite reasonable to pay a lit t le bit  back, i.e. to lose 
some efficiency in order to get more accurate computat ional  
scheme. This can be rectified by "refreshing" the CR, i.e., 
by reinitializing the value of components periodically. 

If the refreshing is done over the regular number of points, 
we find that  this is analogous to a well known program op- 
timizing transformation, called "loop unrolling" [1]. In the 
general case we will use multidimensional loop-unrolling [9], 
but  here we s tar t  with a two-dimensional one as an example. 

Given F(i) which has to be evaluated for i = 0 , . . . , n ,  as- 
suming that  n + 1 -- m • q, we can compute the required 
values using inner unrolling 

F(j .  q + l -  1) , j  = 0 , . . . , m -  1;l = 1 , . . . , q ;  

or outer unrolling 

F( ( l -  1 ) . m + j ) , j  = O , . . . , m -  1;l = 1 , . . . , q .  

In both cases we can construct a two-dimensional CRs. I t  
is easy to see tha t  while in linear CR technique the error is 
accumulated through n + 1 = m • q steps of computation,  
after unrolling it is accumulated through no more than m + q 
steps. 

Several features can be noted here: 
1. If linear CRs are constructed symbolically the main part  
of the work to obtain two-dimensional CRs can be done by 
means of substitutions. It follows from the fact ([9, 14]) tha t  
components of CRs (as expressions) are constructed almost 
from the same set of constants, operation-signs and variables 
as initial expression F(i). Here we can essentially use the 
remember tables feature of the  M a p l e  system [11]. 
2. The efficiency of the computations in two-dimensional 
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unrolled loop will decrease by a factor of two at most. In- 
deed, let the CR (I)(i) have a Cost Index k. Then the outer 
CR ~(j)  will have the same Cost Index and its components 
(as CRs w.r.t, variable l) will have Cost Index not greater 
than k. The total complexity for linear CR-computations 
will be equal to tl = (n + 1)k = mq • k. The total complex- 
ity for two-dimensional CR-computations will be not greater 
than t2 = mq • k + m • k 2 (here mq • k is the complexity of 
computations in the inner loop, and m.  k 2 bounds the com- 
plexity of computations in the outer loop). In most practical 
cases we can reasonably assume that  m _~ q _~ ~ 1 and 
k < ~ .  Thus, we get t2 < 2tl. 
3. Function evaluation in loops using recurrence relations is 
inherently parallelizable. This transformation allows us to 
exploit both parallelization and CR-based improvement of 
the code generated [5]. 

In the general case we assume that  we are provided with 
the closed form function F(i) , i  = O, 1 , . . . ,n ,  the value of 
initialization error 6 and the user-predefined bound e of ac- 
cumulated relative error (it is assumed that  6 < e). Af- 
ter constructing the CR-expression (I)(i), the function Iv ( i )  
from (17) simulates cumulative error effect. We can find m 
such that  Z~(m) < ~, Z ~ ( m + l )  > ~. If such an m does not 
exist, there is no point in using CR-technique for given F(i). 
Otherwise, the value m provides us with the number of steps 
over which we can use CR, while remaining within the user 
predefined error bounds. If m > n we can use the linear CR- 
scheme. Otherwise we have to find the minimal natural p, 

such that [mJP > n and use p-dimensional loop unrolling 

of (~(i). The obtained p-dimensional CR will be about p 
times slower than the linear CR, but will accumulate error 
not more than over m steps. It is worth to mention that  
in applications such as plotting 2 or 3 dimensional unrolling 
typically suffice. 

4. CONCLUSION 
The method to estimate the worst-case CR-caused accu- 
mulated error described above can be useful when the CR- 
technique is applied to expedite numeric computations "on 
the flight" (i.e. in the interpretation mode). If we use this 
technique to generate numerical programs, it is possible to 
employ other (more careful) techniques to analyze an accu- 
mulated error. For example, there are no restrictions for 
combining the above method with the run-time analysis ap- 
proach considered in [8]. 

As mentioned above, in plotting applications the error accu- 
mulation effect is not very dramatic, because of the modest 
number of evaluation points. The live demo of the Java CR 
engine is available from 
http : / / s c g l .  uuaterloo, ca/JMCR, him1. 
It is possible to run and compare times for different compu- 
tational tasks with the SurfacePlotter interpreter and Java 
CR engine. As well, the SurfacePlotter with its computa- 
tional part replaced with JMCR can be run to compare the 
plotting quality. Our C implementation [9] is recently ported 
to Maple 6 [11] using new Maple external call facilities. This 
expedites our earlier internal Maple implementation by an 
order of magnitude. Relevant Maple wrappers and dynamic 
link library are available from the author by request. 
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