
NUMERIC CODE OPTIMIZATION IN COMPUTER ALGEBRA

SYSTEMS AND RECURRENT RELATIONS TECHNIQUE

E. V.Zima

Department of Computational Mathematics and

Moscow State University, Moscow, 119899,

e-mail: zimaQlvk. cs.msu. su

1 Introduction

An important problem of symbolic-numeric interface is

the optimization of computations generated by formulae

that are obtained in computer algebra system [1]. This

problem concerns not only the case of numeric code gen-

eration, because necessity in numeric computations can

appear immediately in computer algebra system. It of-

ten means that large-scale scalar computations in cycles

must be evaluated.

Cycles that require numeric computation can appear

in the program immediately as loop statements. For ex-

ample in the time of symbolic-numeric integration [2].

Another case of the numeric cycle appearance is the

case of 2D or 3D plotting by expressions that are ob-

tained in the computer algebra system. The time for 3D

plotting by large expressions is often unacceptable [3].

Optimization of computations in the cycles is the main

problem that is considered in this paper.

Computer algebra systems (such as Reduce, Maple,

etc.) have flexible tools for numeric programs gener-

ation [4, 5, 1]. Some optimizing transformations can

be performed when the code has been generated. In

SCOPE package for Reduce and in Maple these trans-

formations consist in finding of common subexpressions

of arithmetic expressions given and in the reduction of

computational complexity on this basis. Specialized sys-

tems for code generation (such as AL PAL [6]) have more

wide collection of optimizing transformations, including

transformations of cycles. However, collection of cycles’

transformations in ALPAL consists of loop fusion and
constant folding (or code motion in the terms of [7])

only.

When numeric computations are performed in the

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ACM-ISSAC ‘93-7/93/Kiev, Ukraine
01993 ACM 0-89791 -604- 219310007 /0042 ...$1 .50

cycle it is natural

Cybernetics

Russia

to reorganize these computations so

that each iterative step might use the results of previ-

ous steps as completely as possible. It can be done if

we could find by given iterative formulae the recurrent

relations that bring about the same results but econo-

mize the arithmetic operations. The simplest recurrent

relations

h.i=h. (i–l)+h, %~=x~-l. x,i!= (i–l)!. i

are often used by programmers. The methods were

given in [8,9] that provide the recurrent relations con-

struction by given iterative formulae and optimized cy-

cles’ generation. In this paper we will consider combi-

nation of the recurrent relations technique with SCOPE

facilities and spreading of this technique on the cycles

that include calls of user’s functions and procedures.

2 Recurrent relations technique

and SCOPE

Let the function ~(i) is specified by the arithmetic ex-

pression f’(i). Also, let m and n, m s n, be given in-

tegers, and assume that we have to compute the values

of the function for i = m, m + 1, Direct evaluation

of j(i) with the next value of i is often not economic,

since not all the results of previous computational steps

are utilized (some results are simply lost).

Systems of recurrent relations (SRR) of the type

{
f,_l(i) = ‘f-l’. i=m

ft-l(!– I)ot tt(i– 1), i > ?72
(1)

t=l,2,k.

(here o, E {+,*} , and .f~(i) = p~ or j~(i) =

G(gl(i), . . . , g~(i)), where gj(i), j = l]. -.7 v are defined
by the similar systems) and the systems of recurrent

relations of the type

42

{

L-1, i=m,
st_l(i) = St-l(i – I)ct(i – 1)+

ct_l(i– l)st(i– 1), i> m

(2)

{

lb-l, i=m
ct_l(i) = Ct-l(i– l)ct(i – l)–

st–l(i– l)st(i– 1), i > m

t=l,2,..., p;

(here sP(i) = <P, CP(i) = 4P or SP(i) = ~~(g(i)), CP(i) =
Fz(g(i)), where g(i) is defined by the system of (1) type)

are being considered in [8, 9].

The integer k will be called the depth of SRR (1) and

denoted by Dp(fo(z, i)). Note that the depth of system

(1) defines the number of operations @j, which must

be performed to obtain the next value of ~o(i), and the

amount of memory, required to store the intermediate

results. Such systems are completely determined by the

set of values qO, . . ., w and the values of operations

01,..., ok. Therefore, for shorting we shall write such

systems in linear form:

The systems of the type (1) are arise when expression

J’(i) contains the polynomials of i, exponents or facto-

rials of such polynomials, etc. The systems of the type

(2) are arise when expression l’(i) contains trigonomet-

ric functions of such polynomials. The methods of orga-

nization of computations in cycles using such SRRS are

implemented in Reduce. When the cycle is optimized

using SRR technique many expressions with common

sub expressions are appear in front of cycle as a rule.

Example 1. Let’s consider the cycle for computa-

tion the sum of the values

~(~) = e+ sin(z3)2z3+$ (z= ih, i = O, 1,...)

Assume that we need bigfloat computations with preci-
sion 20 in Reduce. Program for direct computation of

the sum of values ~(z) for z = O, h,..., nh will look as

following:

% Section A

on bigfloat, numval; precision 20;

b:=l.0$ h:=b/n$ s:=O$

for i:=O:n do
<<

x: =i.*h$

s:=s+exp(-x**2/2)*sin(x**3) *2** (X**3+X)

>>$

The SCOPE package can not be applied in this case

to whole program because it can not process the cycles.

But we can apply SCOPE to the cycle’s body. As the

result of this action we will get the following cycle:

% Section B

for i:=O:n do

<<

X: =H*I ;

G3 : =X*X ;

G5 : =G3*X ;

S := S+2.0**(G5+x)*SIN (G5)*EXP(-(G3/2. O))

>>$

In the result of SRR construction for cycle in section

A (or B) we get the system of recurrent relations of the

type (2) in which p = 3 and expressions <j for j =

0,1,... ,3 are replaced by

o,
–~2 (h’+h),sin(h3)exp(~)2

sin(6h3) exp(–h2)26h3,

sin(6h3)26~3

and$jfor~=O, l,.. ~,3 are replaced by

1,

–~2 (h’+h) ,cos(h3) exp(~)2

cos(6h3) exp(–h2)26~3,

cos(6h3)26h3

respectively. The program for
needed now looks as following:

?! Section C
<<

computation of values

sO :=0$ S1 :=sin(h**3) *exp(-h**2/2)*2 **(h* *3+h)$

s2:=sin(6*h**3) *exp(-h**2) *2** (6*h**3)$

53: =sin(6*h**3) *2** (6*h**3) $

cO:=l$ c1 :=cos(h**3)*exp (-h** 2/2) *2** (h**3+h)$

c2:=cos (6*h**3) *exp(-h**2) *2** (6*h**3)$

C3 : ‘COS (6*h**3) *2** (6*h**3)

>>$

S:=so$

% Section D

for i:=l:ndo
<<

W:=S1*CO+CI*SO;
CO:=CO*C1-S1*SO;
So:=w;

43

W:=S2*C1+C2*S1 ;

C1:=C2*C1-S2*S1 ;

Sl:=w;

W:=S3*C2+C3*S2;

C2:=C3*C2-S3*S2;

S2:=W;

s: =s+s0

>>$

It’s obviously, that assignments in front of cycle

have many common subexpressions. In the result of

SCOPE’s operator optimize application to the section

Cweget the following section that can be substitution

the place of section C:

% Section E
<< So:=o.o;

GII:=H*H;

G1:=G1l*H;

G17:=2.O**(Gl+H)*FXP(-(Gil/2.0)) ;

sl:=G17*sm(Gl);

G9:=6.O*GI;

G1o:=EXP(-G11);

G12:=2.0**G9;

G16:=G12*SIN(G9) ;

S2:=G16*G1O;

S3:=G16;

Co:=l.o;

CI:=G17*CGS(G1);

G15:=COS(G9)*G12;

C2:=G15*GIO;

C3:=G15 >>$

The time for performing of sections above for

n=10,20,30,40,50is given in Appendix.

3 Optimization of the cycles

that contain functions and

procedures calls

Let’s consider the problem ofoptimization ofthe cycles

that contain calls offunctions and procedures declared

in thesameprogram. Such aprogram can appear in the

time ofcode generation using Maple or Reduce (Gen-

tran) facilities. But it may be not only program on

FORTRANor Pascal that obtainedin computer alge-
bra system. We should take into account such routine

ofMapleas optimize/makeproc[lO] which makes itpos-

sible to generate the Maple procedure (this procedure

can be used later in another places ofa Maple program,

for example in cycles).

The transformation often used for program opti-

mization is substitution of the procedure body on the

place of procedure’s call (including substitution of ac-

tual parameters on the place of formal parameters).

When this transformation is performed for the cycle,

another optimizing transformation (such as code mo-

tion, transformation of inductive variables [7]) can be

applied to this cycle. However, if procedure contains

large-scale expressions such transformation of the cycle

will make the cycle hard to understand.

When SRR’S technique is used for cycle’s optimiza-

tion we can avoid such substitutions. If some actual

parameter of procedure is connected with system of re-

current relations we can connect this system with cor-

responding formal parameter and continue the process

of SRR’S construction in procedure’s body. After that

we can organize computation using the side effect and

new obtained SRRS.

Example 2. Let’s consider the following fragment

of Pa3cal program:

function f (x)y: real) : real;
var u, v: real;
begin

u: =exp (x*x/4-3*x) *y*y/2;
v:=exp(2*x*x) /(y*y) ;

f:=u/(v+l)
end;

begin

. . .

h:=b/n; s:=O;

for i:=O to n do

begin

x: =i*h;

y:=exp(-x*x*x + 3*x*x -12*x) ;

s :=f (X, y)+s+y

end;

. . .

end.

In the result of cycles optimization, that based on

SRR techique, variables x and y are connected with

SRR of the type (l):

x = {O, +,o, h}

y = {O,*, l,*, exp(–h3 + 3h2 – 12h),

*, exp(–6h3 + 6h2), exp(–6h3)}

The program obtained in the result of cycle opti-

mization is given below:

function f (x, y: real) : real;

ver u, v: real;

begin

u: =exp (x*x/4-3*x) *y*y/2;

v: =exp (2*x*x) / (y*y) ;

f :=u/(v+l)

end;

begin

. . .

44

h:=b/n; s:=O;

{ Initializationof computations using SRRS 3

y:=l; yl:=exp(-h*h*h+3*h*h-i2*b);

y2:=exp(-6*h*h*h+6*h*h); y3:=exp(-6*h*h*h);

x:=O; xl:=h;

S:=f(x,y)+s+y;

{ The resulting cycle }

for i:=l to n do

begin

X:=x+xl;

y:=y*yl; y1:=yl*y2; y2:=y2*y3;

S:=f(x,y)+s+y

encl;

. . .

end.

This program contains designator of function f in

the cycle body. We will pass the SRRs constructed into

the body of this function. In the result ofsRRa con-

struction in the body of f variables u and v will be

connect with systems ofrecurrent relations of(l) type:

u = {0,*,l/2,*,e- 2h3+6h2-24heha/4 –3h,

* e-12h3+12h2eh2/2 -12h3
}

v = {O,*~l,*,e 2h’,e-2h3+$24h

*,e4h2/e-
12h’+12h2, ~,e-I;h3}

New functionin program below evaluates the values

u and v using these sRRs and the side effect (variables

uandv become global in this variant ofprogram):

function f-new(x,y: real): real;

{new function that we put in program}

{ insteadof f }

begin

f-new:=u/(v+l);

u:=u*u1; u1:=u1*u2; u2:=u2*u3;

v :=v*vj.; v1:=v1*v2; v2:=v2*v3;

end;

begin

. . .

h:=b/n; s:=O;

{ Initi.alizationof computations using SRRS }

y:=i; yl:=exp(-h*h*h+3*h*h-12*h);

y2:=exp(-6*h*h*h+6*h*h); y3:=exp(-6*h*h*h);

x:=O; xl:=h;

{ Initializationof computations]

{ using new obtained SRRS }

u:=l/2; ul:=yl*yl*exp(h*h/4-3*h) ;

u2:=y2*y2*exp(h*h/2); u3:=y3*y3;

v:=l; vl:=exp(2*h*h)/(yl*yl) ;

v2:=exp(4*h*h)/(y2*y2) ; v3:=l/u3;

s:=f-new(x,y)+s+y;

{ The resulting cycle}

for i:=l to ndo

begin

X:=x+xl;

y:=y*yl; y1:=y1*y2; y2:=y2*y3;

s:=f-new(x, y)+s+y

end;

. . .
end.

Let b=O.5 andn=10000. The time for performing

of the first, second and third variants of a program is

133.08, 105.40 and 58.98 (in seconds). Examples were

executed in ’Thrbo-Pasca16.0 onthe IBM PS/2 (model

50).

Such technique of procedure’s optimization has fol-

lowing visible defect: if function f iscalled from differ-

ent places of a cycle or from different cycles, the def-

inition of f must be manifold in sufficient quantity of

copies with different names. But the main part ofcom-

pupations willbe removed from these definitions in the

result of optimization. After that the SCOPE’s facili-

ties can be applied to the assignments that appear in

front ofthe cycles.

4 Conclusion

Computer algebra provides good tools for code opti-

mization. Especially it concerns to “source-to-source”

optimization. But existent tools (SCOPE, Gentran,

etc.) provide code transmission from computer alge-

bra system to numeric system only. That’s why we

have started developing in MSUasource-to-source opti-

mization library using Reduce as intellectual tool. This

library contains algorithms above-mentioned and spe-

cial tools that provide reliable bilateral connection be-

tween Reduce and systemsfornumeric computationson

MSDOScomputers (Turbo-Pascal,Turbo-C, MathCad,

etc.)

References

1. van Hulzen J.A., HulsofB.J.A., Gates B.L. and

van Heerwaarden M.C. “A code optimization package

for REDUCE”, Proceeding ISSAC’89 (G. Gonnet, cd.),

163-170, New-York, ACM Press, 1989.

2. Geddes K- O., Fee G.J. “Hybrid Symbolic-

Numeric Integration in Maple”, Proceeding ISSAC’92

(Paul S. Wang, cd.), 3641, New-York, ACM Press,

1992.

3. Paul S. Wang “A System Independent Graph-

ing Package for Mathematical Function”, Proceeding

DISCO’90, LNCS, N 429, 245-254, 1990.

4. Gates, B. L.: “GENTRAN: An automatic code

generation facility for REDUCE”, A.C.M. SIGSAM

Bulletin 19, 3, 24-42. New York: A.C.M. (1985).

45

5. Char B. W., Geddes K. O., Gonnet G. H., Leong

B., Monagan M. B., Watt S.M Maple 5. Language Ref-

erence Manual, Springer-Verlag, 1991.

6. Grant O. Cook, Jr. “Code Generation in ALPAL

using Symbolic Techiques”, Proceeding ISSAC’92 (Paul

S. Wang, cd.), 27-35, New-York, ACM Press, 1992.

7. Aho A. V., Uliman J.D. The theory of pars-

ing, translation and compiling. Vol. 2: Compiling.

(Prentice-Hall, Inc. Englewood Cliffs, N.J. 1973)

8. Zima E. V. “Automatic Construction of Systems

of Recurrence Relations”. Journal of Computational

Mathematics and Mathematical Physics., VO1.24, N 6,

(1984), pp. 193-197.

9. Zima E. V. “Construction of Economical Compu-

tation Formulae in Computer Algebra Systems.” Proc.

4th Intern. Conference on Computer Algebra in Phisical

Research, (CAPR), Singapore: World Scientific, 1991,

pp.112-116.

10. Char B. W., Geddes K. O., Gonnet G. H., Leong

B., Monagan M. B., Watt S.M Maple 5. Library Refer-

ence Manual, Springer-Verlag, 1991.

Appendix

The time (in seconds) for performing of the sections

A-E in Reduce 3.3 on IBM PS/2 (model 50) is presented

in the table below. Column B presents the fastest time

for computations needed that received using SCOPE fa-

cilities. Columns D and E present the fastest variant of

the same computations that received using SRR’S tech-

nique and SCOPE facilities. Column E contains the

time of initial assignments’ evaluation and D — the time

of main cycle’s performing. Values of needed sum that

received using B section and (D+E) sections are differ

only in the last digit of mantissa (this difference is 10- 1s

for n = 40).

n A B c D E

10 58.44 58.06 26.03 6.87 11.43

20 120.62 119.3 26.03 14.12 11.43

30 180.43 177.9 26.03 22.41 11.43

40 245.9 240.63 26.03 31.36 11.43

50 310.77 302.69 26.03 36.74 11.43

The following table presents the same information

that received in Reduce 3.3 on 486 DX-50 based com-

puter.

n A B c D E

10 7.25 6.98 3.19 1.16 1.48

20 14.44 14.72 3.19 2.41 1.48

30 22.08 21.8 3.19 3.57 1.48

40 30.38 29.66 3.19 4.78 1.48

50 36.69 36.25 3.19 6.43 1.48

‘6+

