
Simplification and Optimization Transformations of Chains of Recurrences *

Eugene V. Zima

Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, 119899, Russia

zima’Qcs.msu. su

Abstract

The problem of expediting the evaluation of closed-form

functions at regular intervals is considered. The Chain of

Recurrences technique to expedite computations is extended
by rational simplifications and examined as a form of inter-
nal representation, oriented towards fast evaluation. Opti-

mizing transformations of Chains of Recurrences are pro-
posed.

1 Introduction

A common component in the analysis and solution of many
problems, is the iterative evaluation of a function G(z) over

a number of points in an interval. More specifically, given a
starting point Z. and an increment h, evaluation of the func-
tion G(zo + ih) for z = O, 1, n occurs frequently in ap-

plications such as plotting graphs of functions, simulations,

and signal processing applications. Straightforward evalua-
tion of functions (especially obtained as the result of sym-
bolic transformations in Computer Algebra Systems) may

not be efficient, one way to speed up this process is to com-
pute the function incrementally, i.e., use the results of one
iteration in calculating the value of the function in the next

iteration. The basic idea behind the technique discussed

is algebraically converting the given function to a Chain of

Recurrences (CR) that defines the same computation. For

example, to compute the values

G(z) = exp(0.2z2 – 2X – 1)

forz=O.l *2, i =0,1,..., n we can construct the chain of
recurrences:

fo(i) =
{

exp(–1), i=fl

fo(i– l)*fI(z –l), i >0,

fl(z) =
{

exp(–O.198), i=()

~l(i – 1)* exp(O.004), i >0,

*Work reported herein was supported in part by the Russian Fund
for Fundamental Research under Grant 95-01 -0113Sa,

Permission to copy without fee all or part of this material is granted
provided that the copie~ are not made or distributed for direct com-
mercial advantages, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

ISSAC’95 - 7/95 Montreal, Canada
@1995 ACM 0-S9791-699.9/95 /0007 $3,50

such that G(O.li) = fo(z) for i = O, 1, There will be
only two multiplications performed at each step of the loop
which computes ~.(i) values:

fO:=exp(-1) ;fl:=exp(-0.198) ;f2:=exp(0.004) ;write(fO) ;
for i :=1 to n do

begin fO:=f O*fl; fl:=fl*f2; write (fO) end;

This approach has been shown to provide quite impres-

sive reductions in computation time [1, 2, 3]. This paper

extends the set of rules to construct Chains of Recurrences,

described in [3, 4] and introduces optimizing transformations

of the CR-representation.

One of the main features of the CR-technique is “uncon-

ditional” (in some general sense) use of the transfer from the

original expression to the CR-representation. With polyno-

mials, for example, the CR-scheme is faster than direct (or

Homer) evaluation, independently of the relative speed of

addition and multiplication operations. We will try to keep

this feature for new simplifying rules and optimizing trans-

formations. We do not consider optimizing algorithms which

need knowledge about the relative speed of operations, and

algorithms which require backtracking. The advantages of

the considered algorithms are their relative simplicity and

low-level of time consumption.

In Section 2, we recall the base definitions of the CR-

technique and define the CR-interpreting scheme explicitly.

section 3 extends the set of simplifying rules by rational

simplifications. In Section 4, optimizing transformations of

the CR-expressions are considered. Effective algorithms to

find common subchains and ‘(equal-with-delay-subchains”

are given. In some sense these algorithms are analogous to

the optimizing algorithms used to find common subexpres-

sions, but they appear much simpler because they exploit

the linear nature of CR-evaluation.

2 CR-approach to the construction of internal represen-

tations, oriented towards fast iterative evaluation

In this section, after recalling main points of the CR-tech-
nique, we describe the CR-interpreting scheme explicitly.

2.1 Preliminary definitions and examples

Given a constant PO, a function fl defined over Nu{O}, and
an operator 0 equal to either + or *, we can consider a
first-order recurrence

{
fo(i) = @’ if 2=0,

.fO(~-l)O.fl (Z-l), ifi>O,
(1)

42

which defines over NU{O} the function fo (i): fO (i) = PO +

x;:: fl(~)lif @ = +, 0’ fo(~) = W n;:: fl(.Oif @ = *
Further we will call (1) a Base Recurrence (BR) and use
shorthand jO = {PO, 0, fl } to denote it.

Given constants PO,. . . . ~& 1, a function fk defined over

NIJ{O}, and operators 01, ok equal to either + or *, we
recursively define a Chain of Recurrences (CR) as the set of
functions fO, f 1, . . . , fk-1, fk connected in such a way, that
for O~j<k

Further, to denote CRS (2), we will use the shorthand

fo(~) = ‘=(~) = {~ O>@l>pl >@2>p2,... @k, fk}(~)

and call

●

●

●

●

●

●

●

k = L(II) the length of 0,

@apure-surn CR, if 01= @z=. ..= @h=+,

@ a pure-product CR, if 01 = Gz = . . . = oh = *,

@ a simple CR, if fk is a constant,

Comp(j, @) = ~j, (O ~ j ~ k) the j-thcomponent of a

simple CR 0,

lc(*) = Comp(k, @) - last component of a simple CR 0,

or = {%, ~?’+l, %+1,.. .~k, fk}, (0 < r < k) - P
order’ subchain of the CR d? 1.

The CR for G(x) from Introduction can also be rewritten as

{exp(-1), *,exp(-O.198), *,exp(O.004)}(i).

It is a pure-product, simple CR of the length 2.

We will generally denote BRs by lowercase letters (like
f and g), CRS by uppercase Greek letters (like @ and Q),

components of CRS by indexed lowercase Greek letters (like

PO and @l), and subchains by indexed uppercase Greek let-
ters. The shorthand notations O(i) = @ and pi (ZO, h) = pi
will also be used. We also replace the notation

{Po, @~, P~, @2>P2,... Ok, fk}bY

{wo,o~,f~} ,Where f, = {W, @2, P2,... @k, fk}

when needed.
Let G(z) be a polynomial in z of degree n:

G(z) = anz” +a~..-lzl-l + . . . +alz +ao.

Then there exists a n-length simple pure-sum CR

@={po, +,pl, +, P2,+. Pn}!

such that [3, 4] @(z) = G(zo+i *h) for z = 0,1, In fact,
the sequence PO, pn is nothing more than the table of fi-

nite differences of G(zO + i *h) taken at the point i = O. It is

possible to write out explicit formulae, that connect G(z) co-
efficients (an, ao) and components of Z’ (~n, Po) [3].
Further, we will only use the relation between the leading

lNote, that the r-order subchain of the CR @ is CR of the length
k–T

coefficient of polynomials and the last component of corre-

spondent CRS:

p. = ann!h’. (3)

For a given G(x), Z. and h, we are interested in con-

structing a CR @ such that O(i) = G(XO + z * h). A general
algorithm to construct CRS for a given function G(z) was

considered in [3, 4]. This algorithm can be applied to any
function. Instead of finding recurrences for only a particu-
lar class of functions, it automatically generates recurrence
representations for a wide variety of common functions in

order to obtain more efficient commtational procedures for
their

●

●

evaluation. The algorithm is-based on: -

replacing the trivial subexpression z by the base re-

currence {ZO, +, h} on the parse tree of G, and

application of operations from the expression G(z) to

re&rrences already obtained during end-order traver-
sal of the parse tree, in order to construct CRS which
represent larger subexpressions of the given original

expression.

The algorithm to construct CRS has four parameters: ini-

tial expression, variable, starting value of this variable and
step (we’ll refer to this algorithm as cRmke(G(z), z, ZO, h)).

Note that zo and h can be any symbolic expressions. The re-

sult of applying the algorithm to a closed form funct ion G(z)
is a CR, or an expression with CRS as elementary operands
- CR- expression. More precisely, we call an expression @

to be a CR-expression if it represents one of the following
functions over Nu{O}:

● a constant expression;

● aCR {po,O1, p1,02, . . . ,@k, fk} where fk is a CR-ex-

pression;

. a function F(@l, ‘-@z,. . . tPn) of m arguments, where
@l, @2, @~ are CR-expressions.

The definition of the length of a CR is generalized by

defining the Cost Index (CI) of a CR-expression @ to be:

{

o, if @ is a constant

k + cI(fk), if@= {qO, 01, pi,..., @k, fk}
cI(@) = m

q+~cmv, if T’=F’(@l, @2, @~)

j==l

Here q is the number of operations in the expression F 3
The cost index of a CR-expression gives an indication of its

evaluation cost (it counts the number of operations needecl
to evaluate a CR-expression at one point).

2.2 CR simplifying rules and normal form

Let us recall the simplifying rules, which are used at the
time of CIR-construct ion. Rules considered in [3] are given

in Figure 1 under numbers 1-14 (the last column represents

a decrease of CI when the corresponding rule is applied).
Remark. Explicit formula for bt (rule 11) is

“= .:::_L) (:)~”:g: (t:v)@. (4,)

‘Our desire to represent by CRS, as large a subexpression as pos-
sible has a very simple explanation: any successful step of application

of the CR-simplifying rules decreases complexity of future computa-

tional scheme.

3For simplicity, we count all + and * as binary operations.

43

N

1.
2.

3.

4.

5.

6.

7.
8.

9.
10.
11.

12.

13.

14.

15.
16.
17.

before simplification

{Po, +,.fl} ● c
c*{$90, *,fl}

C* {Po, +,fl}

~{Po!+J1}

{90, *,fl}c

bd{w> *> tl})
{90, +,.fl} + {40,+,91}

{Po!*>.fl} * {@o! *>91}

~o);,...)+l~k}+ {+o>+)+>vt}>vt}
l$%}{!JO >*,*. !+4}

{ffo; +,:::; +,$Dk}*{7Jo, +,..., +,7h}

{Po, *,..., *,wt}{@+’”’+..’+ ’41}

Wez, pl>o

{90, +>91}!
WE Z, P1<O

{90)+, W}!

{WO, @l,@k. Pk, +,O}
{po, ol,.. ., Qk, $m, *,l}

{c}

after simplification

{PO + c,+, fl}
{c* fpo, *,fl}

{c*po, +,c*j,}

{(Y” , *, Cf’ }

{Y%, *lfi}
{log(qo), +,log(f,)}

{Po+tio> +) fl+91}

{Po+o> *7 f191}

{po+vbo, + ,..., P[+@t, +,pl+l,+,pk},pk}
{Po*+o, *,..., Pl*til, *, Pt+l, *,wk}, wk}

{bO,+,&,+,...,+,~k+[}

{(0, *,<1,*,....*,&k+J}

{po!, *, To, +,n, +,..., +,@l}l}

{PO!>*) {PO>+, Pi,+,... ,+, PIW, I}-l}

Figure 1: CRS’ simplifying rules (here c

for t = 0,1, ..., k + 1. In fact it shows how to get the table

of finite differences for the polynomial h(i) = j~i)g(i) (when
the corresponding tables for f(z) and g(i) are given) without
referring to coefficients of the polynomials. This formula is
not used directly to construct CRS (see [3]), but is useful
as an auxiliary. For example, the relation between the last
components of factors and product:

(5)

extracted from the explicit formula, is analogous to the re-

lation between leading coefficients of correspondent polyno-

mials and will be used in the next section.
After adding elementary simplifying rules to the consi-

dered list (rules 15-17) we say that the CR-expression @ is
represented by the normal form, if neither rules 1-14 nor
rules 15-17 can be applied to it. Further we will consider

only CR-expressions in normal form and try to support the
point of view on CRS as internal representation of expres-

sions. For some classes of expressions this representation
gives the canonical form, For example, CR-representation
of polynomials is analogous to dense [5] representation of
polynomials. Further we will extend the set of simplifying
rules to obtain a canonical representations for rational func-

tions.

Remark. Rules 1-17 assume that we have an algorithm
that recognizes O, 1, and constants. (Most of the optimiz-
ing transformations assume the same.) Components of CRS
(as expressions) are constructed almost from the same set of
constants, operation-signs and variables as initial expression
G(z) (only new variables zo, h could be added to the initial
list of variables). For example, if G(z) is a polynomial in
z with rational coefficients, then components of the CR for

81 decrease

1

1
>0

>0

>0
>0
~1
21

1+1
1+1

1

1

>0

>0

1
1
0

is a constant expression; k >1 in 9 and 10)

G(z) will be polynomials in two variables (ZO, h) with ratio-
nal coefficients. If we have a “zero-recognition” algorit hm in

the domain of G(z), we can assume the existence of a “zero-
recognition” algorithm in the domain of all CR components
obtained by G(x).

2.3 CR-evaluation and the shift operator

The distinctive feature of the CR-representation is its ori-

ent at ion towards fast iterative comput at ion. Consider the
shift operator E:

E.(f(u)) = f(u + 1),

and examine how it is applied to CR-expressions 4. Given
CR-expression ‘3, we can define the function Value(@):

(c. if @ is a constant exmession c

{’
.

90, ‘f@= {PO, @l, Pl,@k. fk}
‘alue(@) = F(Value(@l), Value(@2),. . . . value(~~)),

if@= F(@l, @2, @m)

and describe the result of the application of E to @:

1
c, if @ is a constant expression c

{Po@191, @l, Pl@2P2,...

E(@)= ““ ,~k-, ok vd-le(fk), @k,. E(fk)},
if@= {pO, @l, ql, ..., @k, fk}

F(E(@l), E(@2),.. ,E(@~)),
if@= F’(@l, @2,Qm)

Definitions of E(Q) and Value(@) are coordinated with the

definition of C1(@) and explain this last. After constructing

4Further we will only use shift with respect to variable i and omit

index near E-sign.

44

the CR-expression @ we can compute values of G(zO + ih),
i = O, 1, ..., N, interpreting @ in the following manner:

Initialize(@) ;

for i:= O to N do
begin write(Value(@));

@: =E(@)

end;

Here Initialize(@) initializes components of@ with ac-

tual values of Zo, h and other variables involved (if needed).

Function Value(@) returns the current value of G, and
@: =.?3(0) updates the CR-expression for the next point.

Example 1 Consider the expression

(2i)!
Z(i) ==+ai+b.

Result of the call C8.meke (z(i), i, O, 1) is the CR-expression

{b, +,a} + {1/3,*, {2,+, 10,+,8} {1/3, *, 1/9}}.

Below we present a Maple-V session, which constructs this
CR-expression and gives the results of interpreting for the
first several steps (square brackets are used in Maple-session
instead of curly braces):

> zz:=(2*i) !/3- (i-2+ l)+a*i+b;

(2 i)!

zz := ---------- + a i + b

2

(i + 1)

3

> g:= CMake(zz, i, O,l): lprint(g);

[b,+, al+[i/3, *, [2,+, 10,+, 8]*[1/3, *, 1/9]]
> Value(g) ;

b + 1/3
> g:= E_(g) : lprint(g) ;
[b+a,+, al+[2/9, *, [12,+, 18,+, 81*[1/27, *, 1/91 1
> Value(g) ;

b+a +2/9
> g:=E-(g) : lprint(g) ;
[b+2*a,+, al+[8/81, *, [30,+, 26,+, 81*[1/243, *, 1/91 1
> Value(g) ;

b+2a+8/81

> g:=E-(g) : lprint(g) ;
[b+3*a, +,a]+[80/6561, *, [56, +,34, +,8]* [1/2187,*, 1/9]]
> Value(g) ;

80
b+3a+----

6561

3 Rational simplifications ofCRs

The algorithm C8make does not simplify rational subexpres-
sions of the given G(z). Here we will consider new CR-

simplifying rules and define operations on CRS, which will

be useful in handling rational functions and complicated for-
mulae, involving factorials, polynomials etc. Most of these

simplifications could be done during preprocessing of the

input of (Xmake by Computer Algebra System (CAS). We
consider CR equivalent of rational simplifications to under-
score the role of CRs as the form of internal representation.

Further, some of the transformations (should they be done

during preprocessing) cannot be expressed without consid-

eration of recurrences (see last example of this section).

3.1 Simplifications based on division of CRs

Given simple pure-sum CRS

@={ IfO, +,. ... $9k}and~={qJO, +,..., @[}, (k~l),

obtained for polynomials F’(z) and G(z) respectively (as-

sume, we only deal with polynomials in z with rational coef-

ficients). We need the simple pure-sum CRS ~ of length k -1
and A of length m < 1such that @ = SW + A. We can com-

pute this by forming the quotient U(z) and remainder V(z)

of the given polynomials and by constructing CRS for U and
V. But it can also be done directly, using the algorithm that
divides simple pure-sum CRS. It is similar to the correspondi-
ng algorithm for polynomials in a dense represent at ion:

Algorithm DivPureSumCRs
Input: simple pure-sum CRS

@={pO, +,. ... p~}and T= {@O,+,@l}(kz l).

Output: simple pure-sum CRS E and A,

such, that L(=) = k – 1, L(A) <1 and @ = 3J? + A.

= .—u.— 0; A := +;
for t :=k-1 downto I) do

begin

<t ,– co;:/HJ~) ;

r:={$+, o,;,..., ?,+, <t};

t times

A:= A–vr; E:=E+r
end;

On each step of the loop we get the next component of
the quotient E (starting from the last one) like in the poly-
nomial case, where we get the next coefficient of the quotient

U(z) (starting from the leading coefficient). Assume that @
and V were obtained via CRmake with rational numbers as

actual parameters for ZO, h. All the components of @ and Q
are rational numbers. It follows from (4), (5) and simplifying
rule 11, that lc(~r) = lc(A) before performing subtraction

on each step of the loop. We assume that after each eva[-
uation of the difference A — ~r, the result is transformed
to normal form by reduction of zero lc(A – Tr). Auxiliary

CR r is an analogy of the monomial in polynomial case, and
multiplication ~r is performed quite fast (even with the aid
of explicit formula (4)), because of this specific of 17. De-
note the result of multiplication ~r as A = {Jo, +, At+l),.

Then we can derive from (4):

{

o, ifs<t

‘s = & z~l~y~~) (~)~r(.~,)j ifs Z t

Now, assume that @ and g were obtained via CRmake
with symbolic actual parameters for Zo, h. We need to assure
that the operation

Comp(t + 1, A)

+1 (’:1)

is valid as division of polynomials in two variables. This
follows immediately from the existence of the quotient [J

and remainder }’ for initial polynomials F and G.

Since we have the algorithm to divide simple pure-sum 4.== GCD(W, % (Q + VI)) not necessary enjoy the prop-

CRS, we can easily develop an algorithm to find GCDof simple erty (6) (it could have redundant co-factors, since

rmre-sum CRS. If initial exwessions are Pobomials with GCD(A, A + Al) could be non-trivial 5,.

coefficients from a ring, we c~n define for CR-representation

(as for any other representations of polynomials) algorithms
Thus, after several steps of computing GCD of simple pure-

to compute content, primitive part, pseudo-remainder etc.,
sum CRS we either find the non-trivial factor E of CR ~,

as it is done in [5].
which satisfies (6), or prove non-existence of such a factor. If

-Ifl<Consider now the CR-expression $ = ~@O,
the factor E, L(E) >0 is found, then with the help of trans-

k we can use the simplifying rule:
formation such as (7) we can decrease CI of the expression
@w.

‘$
For CR-expression ~ the situation is analogous, just ob-

–==+$.
*

serve, that in terms of BRs

Here C1(LHS) = k + 1 + 1 z k + 2 + m = C1(RHS).
Another possible simplification - reduction of the @ and ~

on GCD(@, ~).

3.2 Absorption of polynomials by factorials

Besides extension of the list of CR-simplification rules, the

later algorithm gives us an opportunity to define (again in

terms of CR-representation) additional rules, which could
be quite useful when we handle complicated formulae with

factorials (for example, products of binomial coefficients).
Given CRS

with rational components. We need to simplify CR-expres-

sions QT or ~. Consider first @IY which could be rewritten
in terms of BRs as

(recall that IPI = {+,, +,...,+, @~}).

If IJIIO1(* + V71) then (denoting 17 = @l(V? + VI)IT)
we have L(r) = .L(@l) = k — 1, and instead of evaluation

of the CR-expression @II with k + 1 + 1 operations we can
evaluate CR {Poyo, *, 17} with k operations. Decrease of

the computational complexity is evident in this case. This

transformation is an analogous to the transformation

(2i+l)!(4z2 +10i+6) -+ (2z+3)!

If not(121@l(@ + VI)), but W = EA and

then the transformation

@EA + %A (7)

is possible and a decrease of CI is obtained in this way. It
has the following analogy in the usual notation:

(i+ 5)!(2i + l)!(4i2 + 10z +6)(z+6)(3z – 1) -+

-+ (i+6)!(2z + 3)!(3i – 1)

We need not factorize @ to find such a factor E of max-
imal length. Observe, that

2. If El@l(E+ El) and ElV?, then EIGCD(w, @l(’17-i-Tl));

3. If not(~l~l(~+ ~1)), then
L(GCD(ll, Q,(V + W,))) < L(v);

CR-expressions with sub expressions {po, *, cT?; 1} (such as in
rule 14, Figure 1) are handled after obvious pre-transforma-

tion to the form {*,;, *,} ‘

Example 2 Consider an expression

~(.) = (32+ 1)!
-(18i3 + 4522 + 34i + 8)

which we need to compute for z = O, 1,
The Cflmake(y, Z, O, 1) call returns the CR-expression

~ = ~~,x, {24,+, 186,+,324,+, 162} ~ . {8 +,97, + 198 + ~08},

2 {12,+,18,+,8} ‘ ‘ ‘ ‘

Performing transformations like (7) gives us the CR-expres-
sion

~ = ~4, *, {105,+, 375, +,432,+, 162} ~,

{4, +, 14,+,8}

The decrease in computational complexity is obvious:

C1(@) = 11, when C1(T) = 7

We cannot describe function y(z) only in terms of factori-

als, but equality y(i) = V(i) implies that g(i) satisfies the

following recurrence (in usual notation):

{

4, ifi=O,
y(i) = 3i(3i+2)(3i+4)

Y(i – 1) ‘ (2i–l)(2i+2) ‘ if2>0.

4 Expediting transformations of CR-expressions

Given G(z), z, zo, h we have the CR-expression

CD= (Xmke(G(z),z, ZO,h).

Suppose we transform G(x) into equivalent G(z) and get

V = CRma.ke(G(z), z,zo,h).

It is quite possible, that C’l(V) < C1(@). In this section we

will consider transformations, which could decrease CI of
the CR-expressions. The set of all possible transformations
could be separated (conditionally) on

● Pre-transformations – transformations of the initial ex.
pression G(z) which guarantee a decrease of CI after

CR construction, and

5Take, for example, A(i) = (3i + 2)(3i + 5), than A + AI =

(3i+5)(3i +8).

46

● post-transformations – transformations of the CR-
expression O with the same purposes.

Since we try to handle CR-expressions as a usual form of
internal represent ation, we will consider transformations of

CR-expressions. These transformations could be separated

(again conditionally) as

●

●

“blind” - transformations which use only knowledge
about kinds (pure-sum, pure-product, etc.) and lengths
of CRS, involved in an expression, and

“non-blind” – transformations that have access to the

internal CR-representation.

“Blind” transformations of CR-expressions were considered
in [6]. They were based, in particular, on commutativity,

associativity and distributivity laws and application of CR-

simplifying rules. Some of these transformations do not re-

quire backtracking and can be performed during CR-con-

struct ion. (Actually, current Maple-V implementation of
C8,make does these transformations on the first pass.)

Here we will consider “non-blind” transformations, which
(at first glance) are very similar to well-known “common-

subexpressions” [7] optimizing transformations. But the lin-
ear nature of simple CRS allows the faster solution of an

analogous problem.

4.1 Looking for common subchain of two CRS

Let us consider two simple CRS

‘3={90, Eh, pl,02,91. Elk,k, %%}

and

~={@O,e1,41,e2,...,41,e1,41 }1}.
We say that @ and Q have a common subchain of length t

(O< t ~ min(k, l)), if

Pk–j = ‘@j> j=o, l,. ... t, and

@k–j = et–j, j=o, l,. ..,l–l.

If @ and V have a common subchain of length t >0, then,

the CRS @&t and Vt-t define the same function. There-
fore, instead of evaluating @ and V, we can evaluate @ and

* = {#Jo, c31, . . ,@~-~-l,G~-~,@~--t} in order to decrease
the computational complexity of t operations. To avoid
“repeated” shifting, when interpreting a CR-expression, we

need to correct the definition of E(Q) from previous section:

/ c, if @ is a constant expression c;

{Po@l Pl>@l, Pl@2P2).,
. . . . Pk-1 ok %,ok, wk},

if @ is simple CR {$90, @l, pl,@k. Pk};

{Po@l Pl>@l)Pl @292,..
,w-I ok value(st),~k,at}j

E(@) = (““ if @ is simple CR {po, 01, yn,@k. Z}
which refers to the common subchain =t;

{Po@IPl >@l>Pl@2P2>..

. . . . Pk-1 @k value(fk), ok, ~(fk)},
ifo={po, (lh,pl,ok.fk};

F’(E(@I), E(@2), ,E(@~)),

\ if@= F(@l, @2, @m).

The definition of CI can be corrected easily in the same

way. If @ and V have a common subchain of length t = O,
we can not decrease the computational complexity, but we

can decrease the amount of memory needed for CR-repre-
sentation. The algorithm to find a common subchain of two
CRS is given below.

Algorithm CommonSubChain

Input: simple CRS @ = {po,O1, pl, @2,. . . ,P~–l,O~,Ph}

and W={@O, el, @l, e2, ..., +~-lje~)v~}) OC20
Output: integer t such that ~~-t = Tz_t, i.e., the length
of the maximal common subchain of the given CRS (if t <0,

then @ and V do not have a common subchain).

if Pk = @l then t:=o else retUrn(-l) ;
while t < Z do

if (ok–t = cl–t) and (~k–t–l= @f–t–l)
then t :=t+l
else return(t) ;

return(t)

This algorithm is very simple (unlike algorithms to find com-

mon subexpressions) and effective: on one hand, we halt the

algorithm immediately if the result of the first comparison
is false; on the other hand, any new step of the algorithm
will be effective (the value of t increases with the future

optimizing effect).

4.2 Evaluation of common sub-chain with delay

Let us consider two simple CRS

‘3={po, ol,91, (32, Pl. ok!k! w}

and
Q={~o, el, Yl, @2,..., @l, @k,~k}k}

of the same length, and an integer a. We say that @ is equal
to Q with delay a, if@ = E@(V).

Suppose, that CRS @ and T were obtained as the result
of (.Xbnake call with symbolic parameter ZO. This means,

that ~j and ~j depend on XO. If @ = E“(V), then

%’j= subst (~O=~O+~~,@j)>~=O,l,,O,~~

and

Oj=ef, j=l,2,k.

In particular,

pk ‘qk>

and

(8)

Given simple CRS @ and V, the last four equalities allow
us to formulate an effective algorithm to find their subchains
which are equal except for a delay.

Algorithm DelayedSubChain
Input: simple CRS @ = {po, @l, pl,’@2,. ... pl, @k,$ok}k}
and~ = {~0, el, @l,62,&l. ei,@i}, Suchthat (~ 2 z)
and pk = 41
output: integer t and a such that @k–-t = ~a(~l–i), i.e.,

the length of maximal delayed subchain of given CRS and
the value of the delay (if t <0, then @ and V do not have
sub chains which are equal except for a delay).

if ok # et then return (-1, O) ;
taking into account the VdUWof pk, pk– 1, @k,’& 1,

check if there exists non-zero a, which enjoy (8) ;

+(

if Q does not exist

then return(-1,-1)
else t:=l;

while t < ! do

if (o~-, = e~-t) and

(%-t-l = subst(m = ~0 + ~h,~t-i-1))
then t:=t+l
else return(t,a);

return(t,a)

This algorithm uses the linear nature of CRS, and is also
effective: if there is no solution, the algorithm halts after the

first or the second step, but each additional step increases
the value of t and the possible optimizing effect.

If dJ and 0 have equal with delay a > 0 subchains of

thelengtht (t> O), i.e. @~_t =E@(iP_t), then, instead of
evaluating @ and T, we can evaluate

@ and ~ = {@O,el, . . . ,@t_t_l, Ot-t, E-a(@k-t)}

in order to replace t operations e~–t+l, e~ by a as-
signments, which implement a “delay-line” (keeping values,
computed a steps before) in the computational scheme.

Example 3 Assume we need to compute

F’(z) = 3X2 +11z+1O and G(z) =X3 –2x2 +z+l

for z = 0,1,2,,,,, The CRrnake call with symbolic parameter
*O and h = 1 gives us

@ = {3z~ + llzO + 10, +,6z0 + 14,+,6} for F’(x) and

~ = {z: –2$~+zo +1, +,3z~–zo, +,6z0 +2,+,6} for G(z).
Since Zc(@) = 1c(V7) we can try to find common-with-delay
subchain of @ and q. Delay edSubChain(@, V?) returns t=
2 and a = 2, i.e. @ = E2(WI). Therefore, we can use the

relation V = {1, +, E– 2(Q) } in order to replace 2 additions
by 2 assignments. The program to compute F(z) and G(x)
values could be as following:

fO:=lO; fl:=14; f2:=6;

gO:=l; dll:=O; d12:=2; write (f O,gO) ;

for i:=l to n do begin

gO:=gO+dll ; dll :=d12; d12:=fO;

fO:=fO+fl; fl:=fl+f2; write (f O,gO) end

4.3 Based on common subchains transformation of the

CR computational scheme

Given the CRS @ and ~, denote the length of their common
subchain (i.e. the result of CommonSubChain call) by

C’SC(@, V). We can define a over the set of simple CRS as a
binary relation, such that a : Oaq + CSC(@, U1) z O. It is

easy to show that a is the equivalence relation. Therefore, it
separates the set of simple CRS into classes: two CRS @ and
IQ belong to the same class if and only if @aIU. Moreover,

two CRS @ and V belong to the same class if and only if
lC(Q) = lC(W).

Assume we have the set of simple CRS

@(u, @(a >...,+(n) (9)

of length c1, cz, c~ respectively. In order to effectively
find all possible common subchains and organize the inter-
pretation of this set of CRS correctly: assume that

1. we are able to recognize the equality of the components

‘m),p(~) from given CRS;P,, ,

2. in the case of inequality, we are able to order q~m), p~l)

w.r.t. some natural ordering (for example, with the

help of a procedure like ordp in Reduce-3.5).

This means that we have an order ~ defined on the set of

expressions p}~). Assume additionally, that + s *. Opti-

mizing transformation of (9) has been performed in several
simple steps.

Rewrite given C% 0(1), 0(2),..., O(n) in reverse order:

P:1)@:1,9:1-ll @:l-ll. ..7@i>Pi
. . .

P:ni@5n)9:n–l, @:. –l,oT. p;

We can now sort them as words with letters p~m), +, *. First,

let us sort these words with respect to the first letter, p{j,

and denote the result of that sorting as Q(l), IV(2), ~(n).
It is now easy to find all non-overlapping segments [u, v]

(u, v ~ N, 1 ~ u, v < n) of the maximal length, such that

lC(W(’)) = lC(Q(J)) for all i, j ~ [u, v] (all CRS from the
same segment belong to the same class w.r.t. binary relation
a). Therefore, only CRS from the same segment might have
common subchains. If all segments are trivial (u = v), then
neither CRS with common subchains nor CRS with “equal-
with-delay-subchains” in (9) can be found, and the search

is done for this case.
All non-trivial segments are processed separately. Let

us describe briefly the process of extracting common sub-

chains from p CRS within a single class (distinct segment).
We can sort CRS from distinct segment as words and denote

the result of the sorting as 17(1), 17(p), After sorting we
compute the sequence tz, z = O, . . ,p :

ti=csc(ri+l, ri), i=l,l. to=tp=pl,l,
and find the locations of the local minima and maxima in
the sequence {ti }, i.e. numbers
lo,ll,l~. kl, kq, such that loatlo =0, l~=p,
lo<kl<ll <kz<.. .<kq<l~ and

t~ < tk, for kj <i~lj,

ti < tkj for kj > z ~ lj–l,
ti > t[, forkj ~i<lj,
t~ > t[j for kj+l z z >13.

Observe, that:

1.

2.

for any s such that li < s ~ li+l and for any w:
1 s w s p, CSC(17S, 17W) s CSC(17S, r~i+,). There-
fore, for any s : li < s ~ 1,~~ and s # k,+l, I’, can be
rewritten with reference to its common subchain with

rk,+l for maximal “profit”.

foranys, w,i: s<l, <w, s,w~[l, p]

csc(r., rw)s tJt

Therefore, the rewriting of 17~, li < s s li+l with refer-

ence on rki+l does not influence the relations between
length of common subchains in other CRS.

Let us rewrite all CRS ri, z # kj with reference to corre-

sponding r~j and remove them from consideration by as-
signing them a priority value of O. We can repeat this pro-
cess (computing values of t,, finding the locations of minima
and maxima, rewriting of CRS with reference to other CRS
and so on) with the rest of CRS. When we remove new can-
didates, we assign a priority value of 1 (2,3,. .) to them.
After several steps (not greater than log2 p) we will have a

48

sole CR A, as the remainder from initial I’(l), 17(P) and
will assign the highest priority value to it. All the other CRS
refer on A directly or indirectly. The decrease of CI due to

the use of common subchains will be maximal.

To define the CR-interpreting scheme correctly we need

to separate the CR-expressions involved into two parts: the

set of simple CRS and the remaining CR-expressions. When
the shift operator is applied to a CR-representation, it treats

the second part as it was described earlier and delays treat-
ment of the first part. When all expressions from the second
part have been treated, we can shift the simple CRS, tak-
ing into account priority values (starting to shift CRS with

higher priority) and the most recent definition of E (see sec-

tion 4.1), which allows us to avoid repeated shifting.

Example 4 Consider the set of simple CRS which
to the same class w.r.t binary relation a:

o(l) = {0,+,1,+,6,+,6} = 23

0(2) = {1,+,6,+,6} =3i2+3i+l

0(3) = {2,+,3,+,6,+,6} =i3+2i+2

@(4) = {4,+,3,+,6,+,6} =i3+2i+4

Q(5J = {7, +,6,+,6} =3i2+3i+7

After rewriting them in reverse order and sorting

following table:

I tj
0(2) 16+6+1 2
Q)(l) 6+(5+1+0 1
@(3) 6+6+s+2 2
*(4) 6+6+3+4 1
Q(5) 6+6+7 -1

From this table we can derive 10 = 0,11 = 2,12 =

belong

we get

5, kl =

1, kz = 3. Now, we can rewrite O(j), j’ = 1,4,5 by referring

to 0(2) and 4?(3):

@(l) = {(),+,@(Z)}

Q(4) = {4,+, Q!)}

@(5) = {7,+, @$)}

and remove them from consideration by assigning a priority

value of O. (Recall, that @$m) denotes an r-order subchain

of the CR Q(m), e.g. O!) = {3, +,6,+, 6}.)
The remaining CRS are:

On this point 10 = 0,11 = 2, kl = 1 and we can rewrite

@(3) by referring to O(z):

0(3) = {2,+,3,+, 0;2)}

and remove it from consideration by assigning a priority

value of 1. The last CR – @(2) gets a priority value of 2. As

a result we have following computational

Q(2) = {1,+,6, +,6~2)

@(3) = {2,+,3,+,01 }

@(l) = {(l,+, @@)}

@(4) = {4,+, @p)}

o(s) = {7,+, @f)}

scheme:

The CI (computational complexity) of this scheme is equal.

to 7, where the CI of initial scheme is equal to 13. The
shift operator is applied to this set of CRS in the same order
as they are written above (this order is coordinated with
priority values, obtained on previous steps).

Remark. Examples of sources, from which we can get a
CR-expression with a large number of simple CRS are
1. Huge expressions, obtained as the result of symbolic

transformations in CAS.

2. Two (or multi) dimensional computations. Assume, for

example, we have to compute

23(j2/2 –j/2 + 1)+3i2j +i(jz +2j) + 2j2 –j

2.j(is +3i2j +z(3j +2) + 7j +2)

for i = 0,1, . . . ,n; j = 0,1, . . . ,m, After constructing CRS

w .r.t. variable j we get the CR-expression

{23, +,3i2 + 3i + l,+, i’ + 2i +4}

{l, *,2}{i3 +2i+2, +,3i2 +3i+7}”
(10)

To optimize computations in the outer loop (w.r.t. variable

i) we need to construct CRS for all the components of (10)

w.r.t. variable i. .4s the result of this construction we will

get the set of CRS, considered in the example above.

5 Conclusion

We considered new CR simplification rules and CR opti-
mizing transformations, which allow additional decreases in

the computational complexity with the help of CR tech-
nique. All the algorithms proposed are effective, “uncon
ditional” (w.r.t. relative speed of different arithmetic op

erations) and easy to implement. They are implemented

in Maple-V Computer Algebra system [8]. In addition, we
have implemented a CR code generator. From the theory of
compiling point of view, problems in the implementation OF

the CR-interpreter and the CR-code-generator are very sim--
ilar. The code which is generated by a given CR-expressiorl
looks like a CR-interpreting scheme from the subsection 2.3.

We need to choose a mapping function which maps a given

CR-expression onto the set of Maple variables. When that
is done, we generate “ Initialize” section of code consisting

of initial assignments, and the contents of the loop in the

code, which implements the shift operator for a given CR-
expression explicitly (according to the chosen mapping) [2].
After (or during) code-generation, any other known opti-

mizing transformations could be applied in order to obtain
faster code [2].

Acknowledgements

I would like to thank several people who provided me with
useful comments on earlier drafts, and helped in preparing fi-
nal version oft his paper: Sergei Abramov, Nicolai Ardelyan,
Manuel Bronstein, Thomas Casavant, Niklaus Mannhart,
Bruno Salvy, Todd Scheetz, Karthi Vadivelu and ISSAC ref-
erees.

49

References

[I] Zima E.V. Recurrent Relations and Speed Up of Com-

putations using Computer Algebra Systems. in “Design

and Implementation of Symbolic Computation Sys-
tems” (cd. J. P. Fitch), DISCO’92 Proceedings, Springer

Verlag LNCS v.721, 1993, pp.152-161.

[2] Zima E.V. Numeric Code Optimization in Computer
Algebra Systems and Recurrent Relations Technique,

Proc. ISSAC’93, Kiev, Ukraine, July 1993, ACM Press,

pp.42-46.

[3] Bachmann O., Wang P. S., Zima E.V. Chains of Re-
currences – a method to expedite the evaluation of
closed-form functions. Pro.. IS SAC’94, oxford, UK,

July 1994, ACM Press, pp. 242-249.

[4] Zima E.V. Automatic Construction of Systems of

Recurrence Relations. USSR Comput. Maths. Math.
Phys., VO1.24, N 6, 1984, pp. 193-197.

[5] Davenport J., Siret Y., Tournier E. Calcul formel, MM-

son, 1987.

[6] Zima E.V. Transformations of expressions associated
with systems of recursive relations. Moscow Univ. Com-

putat. Maths. and Cybernetics, 1985, N 1, pp.60-66
(translation from Russian).

[7] van Hulzen J.A. SCOPE, a Source-Code Optimization
PackagE for REDUCE, Twente Univ., The Nether-

lands, 1994.

[8] Char B. W., Geddes K.O. (and others) Maple-V. Lan-

guage Reference Manual. Springer-Verlag, 1991.

50

