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Abstract

We propose an algorithm to construct the minimal annihi-
lating operator of a function or a sequence, when the op-
erator is completely factorable (i.e. can be decomposed in
first order factors). The algorithm is designed in the frame
of the Ore rings theory and can be used in the differentiaf,
difference and q-difference cases. We describe also a Maple
implement ation of the algorithm.

1 Introduction

Constructing a linear ordinary differential operator annihi-
lating a function (an annihilator of the function) is neces-
sary when solving many computer algebra problems. We list
some of these problems.

P1. Expanding a function as a power series and sub-
sequently investigating the expansion. An annihilator lets
one construct the recurrence for the series coefficients and
manipulate them ([14, 17]).

P2. Solving linear inhomogeneous equations. Some
methods use annihilators of the right-hand side ([4, 8]).

P3. Integrating. If the minimal annihilator L, ord L =
n, of j is given, then one can check whether there exists a
primitive of ~ with an n-th order minimal annihilator. If
yes, then it is possible to express the primitive explicitly via
f ([91)

P4. Recognizing the equivalence of two given functions.
If the common annihilator of both the functions is given,
then it suffices to check the agreement between the corre-
sponding “initial conditions” (a classical approach).

The minimal annihilator, i.e. the annihilator of the low-
est order, is the most informative. Note that to solve P3
only the minimal annihilator of j is suitable. Applying
algorithm [8] to an equation with a d’Alembertian right-
hand side guarantees that all d’Alembertian solutions will
be found only in the situation when the minimaf annihilator
of the right hand side, decomposed in first order factors, is
given. (A function is d’Alembertian if it has a completely
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factorable annihilator, i.e. an annihilator, which can be de-
composed in first-order factors. ) In P 1, P4 manipulating
the minimal annihilators reduces the cost of the investiga-
tion.

In this paper we propose an algorithm to search for the
minimal annihilator L of a given d’Alembertian ~. Our main
result is an algorithm which, given an expression E, com-
posed of d’Alembertian elements by the signs of the oper-
ations of addition and multiplication, constructs the com-
pletely factored minimal annihilator of E. It is assumed
that all the d’Alembertian components of E are given with
their completely factored (i.e. decomposed in first order fac-
tors) minimaf annihilators. Together with the algorithm we
describe its Maple implementation.

It is easy to observe that PI - P4 can be considered not
only in the differential case but also in the difference and
the q-difference cases. The concept of Ore rings ([16, 10,
11, 12, 13]) lets one design universal algorithms which can
be adjusted on one or another concrete case. The algorithm
and the program described below are universal and find the
minimal annihilators in all cases covered by the Ore ring
approach.

2 Generalities

Let k be a field of characteristic zero, X an indeterminate
over k, u an automorphism of k, and 6 : k + k a map
satisfying

r5(a+ b) = r5a+ cib, r5(ab)= a(a) Jb + da b (1)

for any a, b E k. Then we can consider the Ore ring k[X; u, 6]
of polynomials in X over k with the usual polynomial addi-
tion + and multiplication o given by X o a = u(a)X + r5a
for any a 6 k ([16, 10, 11]).

Let K be u, 6- compatible extension ring of the field k, i.e.
a can be extended to an automorphiem of K and J can be
extended to a map K + If hoMing (1) for any a, b E K. A
map O : K d K, is pseudo-linear with respect to u, 6, if

8(ZJ+ v) = Al+ L%, e(w) = a(u) c%+(5U?-r.

for any U,V E K.
We assume that the constant subring of K (i.e. the set of

all a E K such that u(a) = a, Ja = 0) is a field. Fhrthemore,
we assume that this field is equal to the constant field of k
and denote it Const.
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IVCtan consi{irr the ring k[O]of operators K -i K of the
form p(d), J,(. Y)● k[.Y: a. h]. These operators are linear over
C’ollst.

It is a.ssumr,l that if a first-order equation Fy = O,F E
k[fl], lli~~i~nonmro solution in a o, d-compatible extension of
the field k, then the equation has a nonzero solution in K.
‘flew solutions f(mn the set Hk c K of hyper-ezporzerztudel-
{wmnts. .Any elmnent of ‘Hk is invertible in ~. An equation
P!/ = O and the operator P are called completely \actor-able
if P can be decomposed as the product of first-order opera-
tors mvr k Solutions of all completely factorable equations
form the Iiueiw (over C’onsf) space AK C K of d ‘Alembertian
tlcm(r~ts Itis ca.s~,to see that, ?lk c AA..

Let L ~ k[d] iix]d S be the space of solutions of Ly = O
lx>lon~ing to K We assume that dim S < ord L in this
sitUilt,ioll.

}fre will also use the following notions which have been
{Mined in [T. 8).

● the operator V, which is the minimal monic operator
such that V 1 = 0 (an analog of ~ and A). It is obvi-
ous that V/ = O u f ~ Corwt;

● the set I(f), ~ E K, which is an analog of the indefinite
inte~ral and sum:

I(j) = {d I v’d = f}

If j ~ 1(. d E I(f), co ~ Ccmst, then d + co ~ I(f)
and, vice versa for any dl, d~ E l(f) we have dl – dz E
~onst. Wf, assume that I(j) is not empty for any ~ E
K If 14 IS a set of elements of h’. then J(U) denotes
the srv of all d such that Vd ● 1/. \Ve write for brevity
1(~,,. .,, frn) instead of ~lZ(~21(~:; ~,~-,~(}m) .));

● d ‘Alembrrttan space

Z(p,,. ..,lpr,,, o), (2)

whine pi. . . . p,,, E H& is a generahZatiOn Of

It is easy to see that

If a d’Alembertian space A is given, then we can
construct the completely factorable operator over k
such that, A is its solution space and vice versa (see
(5).(6).(7) below).

L(,t61=,~k,t l~en6=0,.=co+b and V= O–c. If
a # 1, then WC’assume that there exists a E k such that d =
(Y(o – 1). FYOmnow on we will use the notations a for this
\,alueonlv.

We w~ll (onsider t,hr following two cases:

aml
a#l; c=o, cr=l

(3)

(4)

In these two cases 8 = V and we will use the notation k[V]
rather then k[O]. It is easy to show that the general cases
can be reduced to the cases (3),(4). In the general case
the substitution 8 = V + c transforms an element of k[O]
to an element of k[V]. The substitution V = O – c returns
operators to k[~].

If L E k[O] then going this way we transform L to L’ E
L-[V] such that ord L = ord L’ and L~ = L’j for any ~ E K,

We denote by ~,k the set of all completely factorable el-
ements of k[V]. An element of ~, can be presented in the
form g(V–h~) oo(V-hl ),whereg,hl,... ,h~ =k. We
will assume (unless otherwise stated) that the leading coef-
ficients of elements of ~k under consideration are equal to 1
or, equivalently, the elements are monic. Such a completely
factorable operator can be written as

(V–hm)oo (v-h,) (5)

with hl,...,h~ E k.
Let L E ~k have the form (5) and VI, .... q~ E fik. be

such that
Vq,— =ht, 2= 1,,,., rn,
%

Then the general solution of the equation L(y) = O can be
written (see [7]) in the form (2), where

(6)

and, respectively,

We call L E k[V] an annihilator of ~ E K if L(f) = O.
In this paper we will consider the questions of constructing
a completely factorable annihilator of one or other concrete
element of d~. The problem is equal to the problem of
constructing a d’Alembertian space which includes this ele-
ment. It is desirable to get the minimal annihilator (i.e. the
annihilator of the lowest possible order) of a given a E dk.

The question of minimality will be dkcussed in Section 4.
Now we limit our attention to the search for any completely
factorable annihilator. If any completely factorable annihi-
lator exists then the minimal annihilator will be completely
factorable.

Let La, Lb E ~k be completely factorable annihilators
of a, b E &. Recall that then a + b is annihilated by the
operator

M = lLCM(La, Lb) (8)

(from here on lLCM is the left least common multiple and,
respectively, rGCD is the right greatest common divisor).

Due to Ore’s theory ([16, 7]) the operator M is com-
pletely factorable. This theory lets one find Al in the com-
pletely factored form if the corresponding factorization of
L. and Lb are known. More precisely, this theory says
that if we let R, S E k[V] and R/S be the left quotient
of lLCM(R, S) by S:

lLCM(R, S) = (R/S) o S = (S/R) 0 R,

then any solution of R(y) = O is mapped by operator S into
a solution of the equation (R/S)(y) = 0, and the following
propositions hold:

01. ord(R/S) = ord R – ordrGCD(R, S);
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02. If R is irreducible then so is R/S;
03. If R= Rlo R20.. oR~andR l, R,,..., RnEk [@]

are monic then

R/S = (R]/Sl) o (R2/S2) o o (Rm/sm),

where S2 = S/(Rj+l o Rj+z o ~ oRm) for 3“= 1,..., m.
We can find (8) in the completely factorable form as fol-

lows: using the factorization of La apply 03, to get a factor-
ization of La/Lb in first order factors; then take (La /Lb)o Lb.

Observe, that this approach gives a d’Alembertian space
which contains a + b. Let two d’Alembertian spaces A, B of
the form (2) be given. Then using (7), (6) and 1LCA4 pro-
cedure we can construct such a d’Alembertian space which
is equal to the set

A+ B={a+bla EA, b~B}.

It is interesting that dk is not only a linear space over
Const, but a ring as well:

a,b~dk~ab~~b (9)

([6]). In the next section we give a proof of this and propose
a procedure to construct a completely factorable annihilator
of ab, if annihilators La, Lb E &k of a, b E dk are given.

3 Annihilators of products

We can prove (9) using induction on m + n, where m and
n are the orders of La, Lb E ~k which annihilate a and b.
But unlike the case a + b, here it is most convenient to use
d’Alembertian spaces instead of annihilators.

Show that the moduct of d’Alembertian smces A and
B, i.e. the set -

AB={abla~A, b~

is a d’Alembertian space. Let A and B
l(P1, . . . . q~, O) and, respectively,

1(41,..., A, O).

B}

be given in the form

(lo)

Thecasem+n = Oisthecasem = O,n =0 and there
is nothing to prove, If either m = O or n = O then the
statement is also obvious. Consider the case m > 0. n >0.
First of all observe that

pl@l 1(1, w2, ....$%. o)I(l, @2, @n,o)=, o)=
= Wl@ll(V(~(l, P2,..., Pm, 0)~(1, @2, ....@n. O))),

because

C~l@l ~ pl@lI(l, p2,..., pmj 0)~(1, @2, +n,0)n,0)

for any C c Const. Hence we have

AB = 91~11(1,92,..,, y2m,0)I(l, @2,..., @n,0) =
= WltJl~(V(I(l, p2,..., Wm, 0)~(1, @2, A,o)))o))) =
– W1*11(U(I(1,972, . . ..wm. o))v(I(l, ti2,..., @n, o))+—

+v(I(l, q2,..., qm, o)) 1(1, +2, h,o)), o)) =
= VJ1@l~(U(I(lj W2,....4%. o))~(@2,..., $ha,o)+
+r(P2,..., %1,o)I(l, @2, wa,o)), o)).

(11)

Note that al(l, pz,. ... pm, O) is the d’Alembertian space

1(1, u(@),..., a(pm), o).

The products

0(1(1, ~2,..., wm, f)))~(+2,7fbn,o), ”)

and
I($02,,..,9m, o) 1(1, @2,...,4n, o)

by the induction hypothesis are some d’Alembertian spaces
G1 and Gz. The sum G1 + Gz is a d’Alembertian space G,
which can be constructed as we saw in the previous Section.
Since

AB = I(PIY1,G) (12)

the statement is proved.
Let R, S E ~k be such that A is the solution space of

R while B is the solution space of S (i.e., Ker R = A and
Ker S = B).

The symmetric product R @ S of two operators is the
minimal operator annihilating all products ab such that a E
Ker R, b 6 Ker S. By (11) we have that if R, S E Xk then
R@ Sisspanned byab, aCKer R,b ●Ker S,and R@SC
~b. Before giving a formula for R @ S we write down the
~p properties of completely factorable operators ([7]).

Vql
Ker((V–~)oo (V-- ~, ))=1(91,..,91,0), (13)

where ql, ..., ql, pl, . . ..pl~%k. l>l. Then

ql = W

and

Ker((V– ~)o. ..o(~)ou(vl)))) =
= 1(492, ..,lfi, o),

Ker((V– ~)oo(V- ~) of f(Vl)oF’) =
= 1(1,92,...,9 ,0),

Ker((V–~)o. o(V-~)o

Ocr(J-) o (v – *)) =

= I(po, wl, ....9(.0),

(14)

(15)

(16)

(17)

PO ~ %k. Note that the left-hand sides of (15),(16),(17) have
the form Ker (LI ), Ker (Lz), Ker (L3). In the general case
L,, Lz, Ls are not operators over k, because cr(ql ) and cr(~ )
could be not in k. But if we normalize these operators, i.e.
present each of them in the form

g(v-ht)o. o(v-hl)

with{E Nk, hl, ....ht E k and take

(V-h, )o. o(v-hl)

then an element of ~k will be obtained. Denote by [P]nornt,
where P is an operator, the result of such a normalization
of P. If P is given in the usual (not factored) form, then
~~ent,no,~ will be the result of dividing P by its leadlng coef-

Now we can give a formula for R @ S E ~k as foliows. If
R = 1 or S = 1 then R@o S = 1. Otherwise let

R= RIo(V–~), S= SIO(V– :)
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Given the above description of the right-hand side of (12)
lets us write

1
R R S = [WC’AI(P, Q) o — o (V - ~)]n.rm (18)

U(K)

where

P = ([RI 0 u(~) 0 V]~O,~/r7) @ [S] 0 U(<)]n.rm,

Q = [RI o u(n)]nmn @ [s1 o u(() o V]rmn.

In all these cases the normalization gives eiements of fk
(it is a consequence of q, ( E ~k ). Thanks to 03 these
elements can be computed in the completely factored form.

The preceding can be formulated as the following

Proposition 1 Let an expression E be composed of ele-
fnents of Ak by means of the operations of addition and
multiplication. Let for any d ‘Alembertian element found in
E its annihilator m F~ be given. Then one can construct an
annihilator of E belonging to Fk. ❑

Additionally if k is a functional field (e.g. k = C(z)
and V = 6 =’= ~) then f(g(z)) E dk for any f(z) E
&, g(z) E k. Indeed, let

f(z’E~l(r)/~2(z)/~m(z)/0

then

f(.d~)) = W(!7(T))
/

w(9(~))9’(~)
/ /

9m(9(z))9’(z) 0,

resp., if

(: +))o... o(: -h2(w-&(4)

is an annihilator of f(z) then

(~ - hm(g(~))g’(~) + (rn - l)f&))o

(&hm-d@))d(4+(m-2)$&))o . . .

.0 (-& - h,(g(z))g’(x) + $f$)) o ($ – hl(9(r))9’(~))

is an annihilator of ~(g(r) ). It is obvious that

pl(g(~)), p’z(g(~))g’(~), .... Pm(9(~))9’(~) ~ ~k

and

g“(z)
h,(g(z))g’(z) – (i – l)— Ek, i=l, ....m

g’(x)

ifql(z)) . . ..p”. (z) EMk and hl, . . ..h~~k.
Thus in the differential case with k = C(z), the ex-

pression E above may be constructed on the base of some
known d’Alembertian functions not only by the opera-
tions of addition and multiplication but also by substitu-
tions of rational functions in z for z. It is easy to see
that sinz, cosz, arcsinz, arctanz, shz, chz, e’,lnz, zc (c E
C) and any rational function are d’Alembertian over C(x).
Therefore, for example,

ez’sh. + ~V

and so on, are d’Alembertian functions over C(x) and one
can construct completely factorable annihilators for them.

In the case a # 1, V = 6 = rr– 1 the formulated addition
to Proposition 1 seems to be fafse. But in this case ~ E dk
implies d(f) E Ak, t E Z. If

(V-hm)o... o(h, ),)

is an annihilator of f then

(V-a’(hm)) o...o(a-(h,))))

is an annihilator of d(f). In the case k = C(n), a(~(n)) =
Ef (n) = f(rz + 1) the following functions (sequences) are
obviously d’Alembertian: u. (the n—th Fibonacci num-
ber), r(n), ‘1(n) (the digamma function), Wm(n) (the m-th
polygamma function), ~~=1 R(t) (R E C(m) has no pole in
N U {O}), and any element of C(n). Therefore, for example,

is a d’Alembertian function over C(n) and one can construct
a completely factorable annihilator for it. Corresponding
examples for the q-difference case k = C(z), a( f (z) ) =
Qf(~) = f(qz) ZJSOcan be given.

But there is no guarantee that the approach proposed
above will give the minimal annihilator even in the case
where the minimal annihilators for the ori inal elements are

5used. The example of function sin2 z + cos z is quite reveal-
ing. Therefore the problem of simplifying annihilators must
be considered.

4 Minimal annihilators

In constructing the minimal annihilator the accurate inte-
gration procedure ([9]) plays a key role. First we list the
necessary facts from that paper.

An element g ~ K is a primitive of t c K if Vg = t. The
problem of accurate integration is the following: let f 6 K
and the minimal annihilator L E k[e] of order n of ~ be
given. Decide whether there exists a primitive g for f such
that the minimal annihilator ~ of g is of order n. It has
been shown that there are three possibilities:

1.

2.

3.

such a primitive does not exist,

there is a unique such primitive and ~ can be con-
structed,

all primitives off have annihilators of order n, in which
case one can construct the family

Ec=Li+cMov (19)

of n-th order annihilators of primitives of ~ (M is a
fixed operator, C runs through the set of constants).
For any primitive g of f the value of C is

Zo(g)
–~’

(20)

ln(z2 + 1) sin+ + arctan x,
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Now we return to our problem: given a E dk, V E ~k

such that V(a) = L, construct the minimal annihilator W 6
Fk Of a. Let

Vql
V=(v–y)o... o()– —)

ql

and (13) takes place. By (14) and (15) the operator

(v v9r)o, ,,o(v_v??2
---)411)

q

annihilates the element

f = v(:)

It is enough to construct the minimal annihilator L of j and
we decide (by the accurate integration procedure) whether

there exists an n-th order operator ~ which annihilates ~
or not. The minimal annihilator of a is equal to

[i o -#norm
if it exists, and

[L Oc@normfJ(v-~)

(21)

(22)

otherwise (due to (17)). It is easy to see that a recursive
algorithm appears.

Algorithm 1
W) O.. .O (*)*).Input: a~~k, V=(V– ~[

output : the minimal annihilator W of a.
1. If 1 = ord V = O then the final result is 1.
2. Apply the algorithm recursively to

v(:), [(v– :) O... O(V– *)oa(ql)]norm

Let an n-th order operator L be the result of the recursive
call.
3. Apply the accurate integration procedure to

L, V(;)

and decide whether there exists an n-th order operator ~
such that Z(f) = O or not. The final result W is (21) if it
exists, and (22) otherwise. ❑

One can observe that the result W of the last algorithm
is a non-factored operator (because the accurate integration

procedure returns non-factored operator ~), though W is
completely factorable aa a divisor of a completely factorable
operator. But an easy factorization is possible. In [3] has
been noted that TGCD(V, W) with V decomposed in first-
order factors can be computed in a completely factored form.
In our case W right divides V, thus rGCD(W, V) = W;
thanks to [3] we get W in the wanted form.

The process was described in [3] for the differential case.
It was supposed that the d’Alembertian solution space for
V is given:

Ker(V) = l(pI,..., p~, O),

pl, .,., pm E %k,. Then the d’Alembertian sohrtion space
of rGCD(V, W) can be constructed. First we briefly de-
scribe the process for the general case and then we will

give the algorithm, which uses a factorization of V instead
of its d’Alembert ian solution space. We will denote by
L[W], L E k[V], p E ~k, the operator [Lo p]nO,m/V.

Let ord W = n. If ordrGCD(V, W) ~ 1 then due to [3]
one can find among

J@’11, w[~ll[wzl, ,,,, W[wl[wzl...[vml

an operator of order < n. Let wI’PIIIw211P’1,0 < 1 < m,
be the first such an operator (note that ord wL~’11~21(~’l s
ord WIW]l(~Zl”Iwi+ll,i = 1,..., m – 1), Then

W[wll[w,l...[ll( p,),) = o (23)

and all Wopl, W[W]109Z, .... W[P1][W21[WZlopl_l_l are not
right divisible by V. This lets one find a common solution
of V(y) = O,W(y) = O in Rk. Let p = P1 and

L = @11[921491-21 o 91–1 = bnVn + . . +bl V +bo.

is such that
w[vll[921..[wf-21 (@) =0. (24)

Now one can find a sohrtion in k!k of the equation
W[VII[W21[W1-SI(V) = O and so on. Finally we will obtain

~ E ~k such that W(@) = O and additionally V(v) = O
(the last is proved in [3]). Now it is enough to apply the al-
gorithm recursively to W[*l and to the operator V[ti] whose
solution space is of order m – 1 and is the result of applying
Vto 1(~, pz, ..., pm, O). Let it give an operator U and
Al,..., At E ~k be such that

Ker(U) = l(AI,..., At, O).

Then
Ker (rGCD(V, W)) = Z(@, Al, .... At, O).

Now we can use formulas (15),(16),(17) to describe the
following algorithm.

Algorithm 2
Input: operators V = (V–hm)O...O(hi),), W E
kW1.
O;t;ut : rGCD(V, W) in completely factored form.
1. Let PI, .... pm satisfy (6). If ord W(~ll < ord W then set
+=plandgoto4.
2. Find the last t, 1< t s m, such that ord WI~llI~’11~’l =
ord W. If t= m then the final result will be 1, otherwise set
I=t+l.
3. Starting with W[p’l[v’-’l o pJ_l,pl, find @ E tik
such that W(+) = O,V(@) = O as it was described above
(see (23),(24)).
4. Apply the algorithm recursively to

Let U be the result of the recursive call. The final result
will be

[u o ‘lnor~ 0 (V - y).u (@)
❑

Constructing elements vi in explicit form as well as op-
erating on them are eventually open to many difficulties. In
the next section we demonstrate how these difficulties can
be overcome.
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5 Arithmetic of certificates

An,v clement F E ?lK can be completely determined by
r = ~ E k and by a specification of the concrete solu-
tion of tbe corresponding first-order equation. In the case
of a functional field k the specification can be, for example,
tbe value p(p) at a point p at which p(p) # O. We will call T
in tklis representation the certificate of the hyperexponential
elcrnrnt ~ and write down this representation in the form

{r, a specification of p}. (25)

The need for operations on hypergeometric elements ap-
pears, for example, in formulas (6),(7),(18),(21) and so on.
All such computations with hvpergeometric elements can be
done up to an arbitrary multiplier from k. It means that, in
the context of algorithms considered here, it will be enough
to use representation {r} instead of (25). Table 1 contains
definitions of operations on certificates.

Table 1: Arithmetic of certificates

observe that any t E h (at the same time t 6 ?/k) can be-,
represented by { ~}. Thus we are abte to perform computa-
tions with hyperexponential elements using only operations
from k.

Remark that only intermediate results of such computa-
tions will contain constructions of the form {r}, because the
final result in all algorithms has to be normalized. For ex-
ample, consider the expression IV[@] = [It’ o @],,o,m /V from
Algorithm 2. Here @ E ‘U~ and is represented by a certifi-
(’ate r After multiplying operators W and ~ all nonzero
coefficients of the result will have {r-} as a multiplier. After
normalization this multiDlier will be reduced and we get an.
operator vrith coefficients fmm k. Thus, w~ecan formulate
the following

Proposition 2 Algorithms for constructing the minimal
annihilator, accurate tntegrat~on and computing rGCD in
factored form can be implemented without revolving opera-
tions 071hyperexponential elements but using arithmetic in
the field k only. •1

6 Implementation

The algorithms from the previous sections are implemented
in Maple 5.4 [15] with k aa the rational function field. An
operator a. 6“ + + a]@ + ao is represented by Maple list
[so, a,, . . . . a.]. An operator decomposed in the product of
operators is represented as a list of lists. For example, the
operator

(@ ’+.6+:)(--&e+.)

is represented as

A completely factorable operator in the factored form is rep-
resented as a list of lists (as above) but with first element of
the form [1], for example

u) := [[1), [0, 1], [–:, l]].

The user is provided with the following set of proce-
dures: set_ Ore.ring, get-any, get_minirrral, rgcd-fact,
check.prim, get-min-annih. The main procedures are
set-Ore_ring and get-min-arrnih. Other ones are rather
auxiliary, but could be useful themselves.

Procedure set_ Ore_ring(irrdvar, case) sets the prc-
gram to a concrete k[X; u, d] by selecting the independent
variable and concrete 6, u, e and cr. It takes unassigned
names as parameters. The value of the first parameter
stands for the name of the independent variable, the value
of the second parameter selects a concrete k[X; o, d].

Table 2 shows the collection of standard Ore r~ngs

!

differential

Eulerian

recurrent

difference

q-recurrent

q-differen-

tial
q-difference

—
o
i-

1

E

E

Q

Q

Q
—

6
-g--

d
’22

0

A

0

D,

Aq

7-
6-

0

1

0

1

0

0

—

c1

0

1

0

~
Z(q–1)

1

Table 2: Standard ore rings family

In the standard cases adjustment of the program is hidden
from the user; for example, the call

set-Ore -ring (x, differential)

sets the program to the differential case with x as the inde-
pendent variable.

If the value of the second parameter is nonstandard, the
user should provide the program with procedural definitions
of(f, o, U–l and assign concrete numeric values to the con-
stants c and CY(if needed). For example:

delta: =proc(y) diff(y, v) * v-2/2 end;
sigrna:=proc(y) y end;
sigma- l:=proc (y) y end;
=:=l;
set_ Ore-ring (v, nonstandard) ;

Additionally the procedure k-solver which will solve k-
problems appearing in step 3 of Algorithm 1 has to be de-
clared. By the k-problem we mean (aain [8]) the problem of
solving in k a linear equation whose coefficients and right-
hand side belong to k. User defined procedure k-solver
should take two parameters: an equation to be solved and
an unknown function. It should return the result in one of
the following forms:
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{ } — if there are no solutions;

[sol, {}1 — if there is a unique solution sol;

[s01, {sO1l, ... soln}] (where soil,..,soln is the
basis for the solution space of the corresponding ho-
mogeneous equation, sol – a particular solution of the
inhomogeneous equation) — if there are more than one
solution.

In the standard cases we use standard Maple tools for defin-
ing of the procedure k.solver.

Procedure get.any(expr) takes an expression and re-
turns an annihilator of the expression in factored form if the
expression is composed of d’Alembertian elements by the
operations +, –,* and powering to a positive integer. For
example, after setting to the differential case as above the
call

get-any(exp(x/(x-l))+sqrt(x-2+1) )

results in

X4+6X2–2X+3 1
[[ll’[(Z - 1)(Z’ -z’ +Z + I)(Z’ + l)’ll’[m’lll

The first component ofthis list [1] means that thepolyno-
mial is presented in the normalized factored form.

Procedure get_minimal (L, expr) takes an expression
expr and its annihilator L in the normalized factored form
and returns the minimal annihilator of expr.

Procedure rgcd_fact(L,U) isanimplementation of Al-
gorithm 2. It takes two operators (L in the factored form
and V in the non-factored form) and finds their TGCD in
the factored form,

Consider an example. After setting theprogram to the
differential case, we get a third order factored annihilator
for the expression z *-in(z) – x + 1:

> eXpr:=X*ln(X)-X+l;

erpr := zln(z) –z+ 1

> a:=get-any(expr);

a:=[[l], [~, 1],[0, 1], [–~, 1]]

which is not minimal. After the call

> u:=get-minimal(a,expr);

2(Z) = 1

[1, {}]

~ z(x)
—-(:2(Z))=1

x

[$, {z’}]

z(x)
-(:4)=1

–z(z–l)

{}

;, 1]

we have the minimal annihilator in the non-factored form
(first six lines above contain appearing k-problems and their
solutions). Finally with thehelpofrgcd_fact we obtain the
factored minimal annihilator of the initial expression:

> v:=rgcd_fact(a,u);

~:= [[l], [–z(zl_ ~), 1],[–;,1]]

Procedureget_min-annih (expr) calls consecutively pro-
cedures get_any, get-minimal, rgcd_fact and (if the call
of get_any did not fail) returns the minimal annihilator of
the expression expr in factored form. For example

> expr :=exp(x-2)*sinh(l/x)+sqrt (X-3+2);

(.2)5inh(!)+/-ezpr := e
x

> a:=get_min-snnih(expr) ;

a:= [[11,[-~(-15z’1 - 96z8 - 144x13

–720x10+980z9 +656x6+336x3

–864z7+112z’5 +576x12+256+ 192z5)

/((z3 + 2)@5zB +48z5 – 48z’0 – 144z7

+60z6–16z3 –16-96z4+ 16z12+64z9)

1–2Z+2Z3
),1], [- ~2 ,1], [--l;22~3 ,1]]

This procedure also transforms an element ofk[O] toanel-
ement of k[V] and back.

Procedure check_prim(L) takes anoperator L which is
an annihilator of some expression ~ and decides if there ex-
ists a primitive of the expression, which can be annihilated
byanoperator of the same order. Iftheanswer is positive,
the procedure returns an annihilator for the primitive (or
the parametrized family of such annihilators) and operator
r such that 7(~) is a primitive of j (or the parametrized fam-
ilyofsuch operators). Forexample, theminimal annihilator
of @ln2z in the non-factored form is

> expr:=sqrt(x)*10g(x)-2;

ezpr :=filn(~)’

> a:=fact_to-expanded(get_min-annlh(expr)) ;

111131.
[a:= –--. :----- 11

The result of the call

> check-prim(a);

26 4283
–;:,ll,[fiz,-~x,fi z]

is the sequence of two operators: the first one is the an-
nihilator for the primitive of @ln2z, the second one al-
lows to get this primitive from the given expression (the call
f act_to-expsnded here stands for conversion of an operator
to the non-factored form).

Consider the difference case (fib(n) stands for n-th
bonacci number):

Fi-

> expr:=fib(n) -2-flb(n-l) *flb(n+l)+ (-1) -(n+l);
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ezpr := fib(rt)~ – fib(n – l) fib(7~+ 1) + (–1)(”+1)

> a:=get.any(expr);

o = [[1], l–; + ;fi, 1], [2, 1], [–; – ;fi, l]]

> u:=get_minlmal(a,expr) ;

‘IL:= [1]

This proves that fib(n) ~-fib(n-1) fib(rz+l)+(-l)( ’’+l) = O.
Remark that the time for each of examples above does

not exeed 4 sec. on 32 MB Pentium/100 PC.
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