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Abstract

A technique to expedite iterative computations which is
based on multidimensional chains of recurrences (MCR) is
presented. Algorithms for MCR construction, interpretation
and MCR-based code generation are discussed. The notion
of delayed MCR simpli�cation introduced here for the �rst
time often leads to reduced times for both the MCR con-
struction and MCR interpretation phases of this technique.
Three di�erent implementations of the MCR technique (in
Maple, C and Java) are described.

1 Introduction

We consider the problem of expediting computational tasks
like this: given a closed form function G(x1; : : : ; xm), ini-
tial points x01; : : : ; x0m and steps h1; : : : ; hm, compute
values G(x1; : : : ; xm) for x1 = x01; x01 + h1; : : : ; x01 +
n1h1; : : : ;xm = x0m; x0m+hm; : : : ; x0m+nmhm:Many prob-
lems appearing in such applications as plotting (explicit,
parametric, implicit) in di�erent coordinate systems, ani-
mation, signal processing etc. can be reduced to this kind
of computation. In order to expedite the computations a
technique based on chains of recurrences (CR) can be used.
The application of this technique consists of two steps: (1)
algebraic conversion of the initial computational scheme into
chains of recurrences and (2) numerical interpretation of the
chain based computational scheme. Algorithms to construct
and interpret linear and two-dimensional chains of recur-
rences have been considered in [4, 10, 11, 12, 14, 16] together
with implementations of both steps mentioned above within
di�erent computer algebra systems (CAS) and as standalone
software. It was shown in the linear case ([11]) that a CR-
based representation of expressions to be evaluated in loops
is a canonical representation of polynomials and rational
functions. For polynomials this is an analog of the usual
dense form ([6]).

A general algorithm for constructing an optimal compu-
tational scheme for any given expression G is impossible to
develop. We consider an approach to getting a \reasonable"
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solution, which is based on the technique of multidimen-
sional chains of recurrences (MCRs). To understand what
we mean by \reasonable" solutions consider a simple exam-
ple. Exercise 4.6.3-32 from [1]: given real x and natural

m, compute the set of values x; x4; x9; : : : ; xm
2

in the mini-
mal number of multiplications. From [2] we know that the
lower bound for the number of multiplications is larger than

m+m2=3�� for any � > 0 (see also [3]). But for many prac-
tical purposes one can agree with the \reasonable" solution
given by the CR technique:

y:=x; y2:=y*x; y1:=y2*x;

for i:=2 to m do y:=y*y1; y1:=y1*y2 od

The number of multiplications here is 2m. This solution is
reasonable because it is simple, easy to implement, and easy

to extend on similar problems such as G(i) = x3i
2
�i+1.

The main goals of this paper are:
| to de�ne multidimensional chains of recurrences (MCR)
in a general way;
| to give the general interpreting scheme for MCRs;
| to describe Maple, C and Java implementations of the
MCR technique;
| to discuss in the context of MCR evaluation such trans-
formations as delayed simpli�cations, variable ordering etc.,
which are useful for improving the characteristics of CR-
based computations.
The generality applied here allows us to use CR-based com-
putations without restrictions on the dimension of compu-
tational tasks, domain of computations or the type of func-
tions involved in the expression G. For example, the initial
points and steps can be rational, 
oating point, complex, al-
gebraic, or symbolic. The expression G can be arbitrary: it
may include user-de�ned, piecewise or unde�ned functions.

The CR technique is based on a special form of repre-
sentation of polynomials. We will explain each new concept
in the domain of polynomial evaluation (independent of the
evaluation algorithm) and then apply it to the MCR case.

2 Multidimensional chains of recurrences

2.1 Preliminaries

Before de�ning MCRs we reformulate (substituting xj =
x0j + ijhj) the initial computational task to the equivalent
one:

Compute F (i1; : : : ; im)
for i1 = 0; 1; : : : ; n1; : : : ; im = 0; 1; : : : ; nm;

(1)
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and keep x0j ; hj ; j = 1; : : : ;m as parameters. It will be
shown at the end of this section how to proceed with the
initial computational task.

Generally speaking the problem considered here is one of
optimization of nested loops
for i1 := 0 to n1 do

.....

for im�1 := 0 to nm�1 do

for im := 0 to nm do

compute_and_store( F (i1; : : : ; im) ) (*)

od;

od;

.....

od;

Optimization of such loops has to involve di�erent known
optimizing techniques, such as loop fusion, common subex-
pressions elimination, strength reduction, loop unfolding
etc. The MCR technique is shown to be complementary
to all of these transformations. Therefore, concentrating
on MCRs we will make some natural assumptions about
the expression F . Let lj be maximal degree of polyno-
mial in ij subexpressions of F . One of the assumptions
is that lj << nj , j = 1; : : : ;m. This means that it is
unreasonable to apply the MCR technique to a task like
sin(i98)=(1 + i100); i = 0; 1; 2; 3 (here n = 3; l = 100).
For tasks like this it is better to unfold the corresponding
loop in i, or to apply the mixed binary powering scheme.
However a task such as sin(i2)=(1 + i4); i = 0; 1; : : : ; 100
is quite amenable to CR techniques. It is interesting that
the plot3d and animate3d help pages in Maple, MuPad,
Mathematica contain only examples for which this assump-
tion holds. Computer algebra systems can generally provide
honest plotting [7] only in these reasonable cases. There is
another reason to bound the degrees of polynomial subex-
pressions of F when CR techniques are used | the weak
numeric stability of the CR scheme. Approaches to anal-
ysis of the numeric stability can be found in [15, 18]. It
was shown in [18] that the MCR technique can be used to
analyse and improve the numeric stability of MCR schemes
on the 
y. One of the possible solutions is to increase the
dimension of the computational task with a simultaneous
decrease of the values of nj .

However, even for \reasonable" tasks there are still many
factors a�ecting the MCR scheme. The discussion of some of
the approaches to obtaining reasonably fast MCR schemes
in a reasonably short time, is one of the main purposes of
this paper.

Linear CR techniques [4, 10, 11] can be applied in a
straightforward way to (*), proceeding from the innermost
loop. There are obvious drawbacks to the straightforward
application: an explosion in the number of intermediate
assignments and the necessity to reparse new expressions
which in fact were constructed from atomic elements in the
previous steps of the optimization process. These observa-
tions lead to a need for de�ning MCRs and construction
algorithms which require only one parse of the expression
tree.

2.2 De�nitions

Consider computational task (1). Let the order � be
de�ned over the set of variables i1; i2; : : : ; im such that
i1 � i2 � : : : � im. Considering any expression
which does not depend on i1; : : : ; im as a 0-dimensional
chain of recurrences, we de�ne an m-dimensional chain

of recurrences in i1; : : : ; im recursively: given functions
'0(i1; : : : ; im�1); : : : ; 'k�1(i1; : : : ; im�1), de�ned over (N [
f0g)m�1, a function fk(i1; : : : ; im) de�ned over (N [ f0g)m,
and operators �1; : : : ;�k which equal either + or �, we call
an m-dimensional chain of recurrences in i1; : : : ; im the set
of functions f0(i1; : : : ; im); f1(i1; : : : ; im); : : : ; fk(i1; : : : ; im)
connected in such a way that for 0 � j < k

fj(i1; : : : ; im) =

8>><
>>:

'j(i1; : : : ; im�1);
if im = 0;

fj(i1; : : : ; im�1; im � 1)�j+1

fj+1(i1; : : : ; im�1; im � 1);
if im > 0:

(2)

Further, to denote MCRs (2), we will use the linear notation
f0(i1; : : : ; im) = �(i1; : : : ; im) =
f
im
'0;�1; '1;�2; '2; : : :�k; fkg

im

and call an expression � an m-dimensional CR-expression
in i1; : : : ; im if it represents one of the following functions
over (N [ f0g)m:

� an (m� 1)-dimensional CR-expression in i1; : : : ; im�1,

� an m-dimensional CR f
im
'0;�1; '1; : : :�k; fkg

im
,

where fk is an m-dimensional CR-expression in
i1; : : : ; im and '0; : : : ; 'k�1 are (m � 1)-dimensional
CR-expressions in i1; : : : ; im�1,

� a function P (�(1); : : : ;�(s)), where �(1); : : : ;�(s) are
m-dimensional CR-expressions.

Example 1. Function 2j
3
�5 j2+1

�
i2 � 1

�
has the fol-

lowing representation as a two-dimensional CR in j; i:

�(j; i) = f
i
f
j
�2; �; 1

16
; �; 1

16
; �; 64g

j
;+;

f
j
2; �; 1

16
; �; 1

16
; �; 64g

j
;+; f

j
4; �; 1

16
; �; 1

16
; �; 64g

j
g
i
:

(3)

For an m-dimensional CR

�(i1; : : : ; im) = f
im
'0;�1; '1; : : :�k; fkg

im
(4)

we call im the main variable (mvar(�) = im, mvar(C) � i1
for any constant expression C) and keep most of the notation
from the theory of linear CRs [11] with the additional words
\w.r.t. the main variable" in the appropriate places. In
particular for MCR (4) we call

� k = Lim(�) the length of � w.r.t. im,

� � a pure-sum MCR w.r.t. the main variable, if �1 =
: : : = �k = +,

� � a pure-product MCR w.r.t. the main variable, if �1 =
: : : = �k = �,

� � a simple MCR w.r.t. im, if fk is (m�1)-dimensional
MCR (i.e. if fk does not depend on the main variable),

� Comp(j;�) = 'j the j-th component of a simple CR �,

� �r = f
im
'r;�r+1; 'r+1; : : :�k; fkg

im
; (0 � r � k) {

the r-order subchain of the MCR � w.r.t. im,

and so on. Therefore, in (3) mvar(�(j; i)) = i; �(j; i) is
simple pure-sumMCR of length 2 w.r.t. i; Comp(1;�(j; i)) =
f
j
2; �; 1

16
; �; 1

16
; �; 64g

j
is a one-dimensional CR in j, and it

is simple pure-product of length 3.
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Of course changing the order of variables i1; : : : ; im will
change the internal representation (similarly to the polyno-

mial case). Return to the function 2j
3
�5�j2+1(i2�1). It has

the following representation as two-dimensional CR in i; j:

	(i; j) = f
j
f
i
�2;+; 2;+; 4g

i
; �; 1

16
; �; 1

16
; �; 64g

j
: (5)

This di�ers essentially from (3): 	(i; j) is a simple pure-
product MCR of length 3 w.r.t. the main variable j and
Comp(0;	) is a simple pure-sum one-dimensional CR of
length 2 w.r.t. the main variable i.

From here we will denote MCR (4) by � =
f
im
'0;�1;�1g

im
where �1 is a �rst-order subchain of �.

This allows us to formulate MCR construction and interpre-
tation rules in condensed form.

2.3 MCR construction

As operations on multivariate polynomials in recursive form
are implemented using operations on univariate polynomi-
als [6], the algorithm for constructing the MCRs by a given
function F (i1; : : : ; im) can be obtained easily from the al-
gorithm to construct linear CRs [11]. The algorithm be-
gins by replacing all occurrences of il by the simple MCR
f
il
0;+; 1g

il
. Then MCR simplifying rules are applied to

the obtained MCR expression recursively. These rules are
just slight modi�cations of the linear CR-simplifying rules
described in [11]. For example, given two MCRs �;	 and
u = mvar(�); v = mvar(	), the rule to simplify the MCR
expression � + 	 is:
Simplify(� +	) =8>>>><
>>>>:

f
v
Simplify(� +  0);+;	1gv ;
if u � v and 	 = f

v
 0;+;	1gv ,

f
u
Simplify(	 + '0);+;�1gu ;
if v � u and � = f

u
'0;+;�1gu ,

f
u
Simplify('0 +  0);+; Simplify(�1 +	1)gu ;
if u = v and � = f

u
'0;+;�1gu , 	 = f

v
 0;+;	1gv ,

� + 	; otherwise.

One observes that when mvar(�) � mvar(	) and 	 =
f
v
 0;+;	1gv , MCR � behaves as a constant expres-

sion (in the corresponding simpli�cation rule for lin-
ear CRs [11]) with respect to MCR 	. For exam-
ple, j2 = f

j
0;+; 1;+; 2g

j
, exp(i) = f

i
1; �; exp(1)g

i

and f
j
0;+; 1;+; 2g

j
+ f

i
1; �; exp(1)g

i
is simpli�ed to

f
j
f
i
1; �; exp(1)g

i
;+; 1;+; 2g

j
, if i � j.

All other simpli�cation rules are constructed from linear
simpli�cation rules in the same way.

Example 2. Consider step by step the process of con-
structing the MCR w.r.t. j; i for the function i2 exp(2j+1):
1. after the �rst (substitution) step we have the MCR ex-
pression f

i
0;+; 1g2

i
exp(2f

j
0;+; 1g

j
+ 1)

2. after simplifying f
i
0;+; 1g2

i
and exp(2f

j
0;+; 1g

j
+1) we

obtain f
i
0;+; 1;+; 2g

i
f
j
exp(1); �; exp(2)g

j

3. (up to this step pure linear simpli�cations of CRs in i
and j respectively were involved) then 2-dimensional simpli-
�cation gives
f
i
0;+; 1�f

j
exp(1); �; exp(2)g

j
;+; 2�f

j
exp(1); �; exp(2)g

j
g
i

4. after linear simpli�cation of the last expression we get
f
i
0;+; f

j
exp(1); �; exp(2)g

j
;+; f

j
2 exp(1); �; exp(2)g

j
g
i
:

Here the MCR in j behaves as a constant expression with
respect to the MCR in i, and recursive calls of the Simplify
procedure are used.

Remark. The di�erence in construction of the MCRs
for the initial problem only appears in the �rst (substi-
tution) step, when all occurrences of xl are replaced by
f
il
x0l;+; hlg

il
.

2.4 Interpreting tools for multidimensional CRs

Once the MCR �(i1; : : : ; im) for F (i1; : : : ; im) is con-
structed, one can interpret � in shift-and-operate fashion.
In order to describe the general MCR interpreting scheme
we need two auxiliary functions. Let u 2 fi1; : : : ; img. We
de�ne function Valueu(�) as8>><
>>:

�; if mvar(�) � u,
'0; if � = f

u
'0;�1;�1gu ,

f
v
Valueu('0);�1; Valueu(�1)gv ; if � = f

v
'0;�1;�1gv

& u � v;

P (Valueu(�
(1)); :::;Valueu(�

(s))); if � = P (�(1); :::;�(s));

and the result of applying the shift operator Eu
1 to � as8>><

>>:
�; if mvar(�) � u,
f
u
'0 �1 Valueu(�1);�1; Eu(�1)gu ; if � = f

u
'0;�1;�1gu ,

f
v
Eu('0);�1; Eu(�1)gv ; if � = f

v
'0;�1;�1gv

& u � v;

P (Eu(�
(1)); : : : ; Eu(�

(s))); if � = P (�(1); : : : ;�(s)).

Returning to Example 2 we can write:

�(j; i) =
= f

i
0;+; f

j
exp(1); �; exp(2)g

j
;+; f

j
2 exp(1); �; exp(2)g

j
g
i
;

Valuei(�(j; i)) = 0;
Valuej(�(j; i)) = f

i
0;+; exp(1);+; 2 exp(1)g

i
;

Ej(�(j; i)) =
= f

i
0;+; f

j
exp(3); �; exp(2)g

j
;+; f

j
2 exp(3); �; exp(2)g

j
g
i

and so on. One can see, that when u = mvar(�), then
Valueu(�) returns the current value of the MCR expres-
sion � (which is an MCR expression of smaller dimension
in general); when u � mvar(�), then Valueu(�) replaces all
MCRs with the main variable u by their values in MCR ex-
pression � (and therefore decreases the dimension of � as
well); �nally, when mvar(�) � u, then Valueu(�) returns
� unchanged. At the same time Eu(�) shifts an MCR ex-
pression � in u. Observe that if � is a simple MCR, then
only operations �l; l = 1; : : : ; k from (2) are evaluated at
the time of shifting in u.

Now we will describe the straightforward scheme which
solves the computational task (1). The nested loop to com-
pute and to write the values of �(i1; : : : ; im) is:

Initialize(�);
for i1 := 0 to n1 do

�(1) := Valuei1(�) ;
.....

for im�1 := 0 to nm�1 do

�(m�1) := Valueim�1
(�(m�2)) ;

for im := 0 to nm do

write( Valueim(�
(m�1)) ); (**)

�(m�1) := Eim(�
(m�1))

od;

�(m�2) := Eim�1
(�(m�2))

od;

.....

� := Ei1(�)
od;

Here Initialize(�) initializes components of � with actual
values of x0l; hl and other variables involved (if needed).

When the general interpreting scheme of MCRs is de-
�ned it is easy to implement an MCR-based code generator.

1
Eu(F (u)) = F (u+ 1).
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For this, MCR expression � has to be mapped on the set of
local variables (each component of every MCR in � corre-
sponds to a single variable). The main loop in the generated
procedure is almost identical to the loop (**). The di�er-

ence is that every assignment �(j�1) := Valueij (�
(j�1))

and �(j�1) := Eij (�
(j�1)) is replaced by an inline imple-

mentation of the corresponding operation. For example, for
expression (3) our Maple code generator produces the fol-
lowing code:

cc3 := -2; cc4 := 1/16; cc5 := 1/16; cc6 := 64;

cc7 := 2; cc8 := 1/16; cc9 := 1/16; cc10 := 64;

cc11 := 4; cc12 := 1/16; cc13 := 1/16; cc14 := 64;

for _cc1 from 0 to nn1 do

cc0 := cc3; cc1 := cc7; cc2 := cc11;

for _cc2 from 0 to nn2 do

aa1[_cc1,_cc2]:= cc0; cc0:= cc0+cc1; cc1:= cc1+cc2

od;

cc3 := cc3*cc4; cc4 := cc4*cc5; cc5 := cc6*cc5;

cc7 := cc7*cc8; cc8 := cc8*cc9; cc9 := cc9*cc10;

cc11:= cc11*cc12; cc12:= cc12*cc13; cc13:= cc13*cc14

od

2.5 A remark on trigonometric MCRs

In the linear case, if P (i) = f�0;+; �1;+; : : : ; �pg (i.e., P (i)
is a polynomial of degree p in i) then for i = 0; 1; : : : ; values

of s0(i) = sinP (i), c0(i) = cosP (i),
s0(i)
c0(i)

= tanP (i), and

so on, can be de�ned ([4, 8]) by a special form of chains of
recurrences of length p:

st�1(i) =

(
�t�1; i = 0
st�1(i� 1)ct(i� 1)+

ct�1(i� 1)st(i� 1); i > 0

(6)

ct�1(i) =

(
 t�1; i = 0
ct�1(i� 1)ct(i� 1)�

st�1(i� 1)st(i� 1); i > 0

t = 1; 2; : : : ; p; where sp(i) = �p; cp(i) =  p and �j = sin �j ,
 j = cos �j , j = 0; 1; : : : ; p. Chains of this form are com-
pletely de�ned by sequences �0; : : : ; �p,  0; : : : ;  p and can
be presented compactly as a triple ftag; spart; cpartg, where
tag 2 fsin; cos; tan; cot; sec; cscg, spart = [�0; : : : ; �p] and
cpart = [ 0; : : : ;  p]. Let A = f�0; �; �1; �; : : : ; �; �kg and
tag 2 fsin; cosg. The only additional simpli�cation rule for
constructing linear CR-expressions involving CRs (6) is:

ftag; [�0; : : : ; �p]; [ 0; : : : ;  p]g � A =

=

8>>>><
>>>>:

ftag; [�0�0; : : : ; �k�k; �k+1; : : : ; �p];
[ 0�0; : : : ;  k�k;  k+1; : : : ;  p]g; if k � p;

ftag; [�0�0; : : : ; �p�1�p�1;�p];
[ 0�0; : : : ;  p�1�p�1;	p]g; if k > p;
where �p = f�p�p; �; Ap+1g;
	p = f p�p; �; Ap+1g:

This rule of course includes the case of multiplying CR (6)
by a constant expression �0. Replacing subtraction by ad-
dition in (6) we obtain a chained representation for hyper-
bolic trigonometric functions of polynomials. An analog
of the above simpli�cation rule holds for them too, when
tag 2 fsinh; coshg.

In order to be able to interpret trigonometric CRs it is
enough to add some more functionality to functions Value

and E. Let � be a linear trigonometric CR. Addition func-
tionality of E is de�ned by (6). Additions to Value are

Value(�) =

8<
:

�0; if tag = sin;
 0; if tag = cos;
�0= 0; if tag = tan;
: : :

No other changes to CR construction or interpretation rules
are needed. Using this representation of trigonometric CRs
allows us to apply this technique to computational tasks in
the complex domain. Representations of trigonometric CRs
[14] which use properties such as
sin(f�0;+; �1;+ : : : ; �pg) =
Im(fcos �0 + I sin �0; �; : : : ; �; cos �p + I sin �pg);
do not work in the general case.

We �nish this remark with the note that the multidi-
mensional version of trigonometric CR simpli�cation and
interpretation is obvious.

2.6 Estimating the complexity of MCR computa-

tions

In order to be able to compute the complexity of the in-
terpretation scheme, we use the function CIu (where u 2
fi1; : : : ; img) which is called the Cost Index of the MCR ex-
pression � with respect to u :
CIu(�) =8>>>>>>>><
>>>>>>>>:

0; if mvar(�) � u,
1 + CIu(�1); if � = f

u
'0;�1;�1gu ,

CIu('0) + CIu(�1); if � = f
v
'0;�1;�1gv& u � v;

6p;
if � is trigonometric MCR in u of the length p,Pp

j=0
(CIu(spartj) +CIu(cpartj));

if � is trig. MCR in v of the length p, u � v,

CIu(�(1)) + : : :+CIu(�(s))) + q;

if � = P (�(1); : : : ;�(s)),

where q is the number of operations in the expression P .
This de�nition follows from de�nitions of Eu and

Valueu(�): CIu(�) is equal to the number of operations
to be evaluated in order to shift � in u and to compute
Valueu(�). By using this function we can express the com-
putational complexity of the general interpreting scheme as

mX
j=1

CIij (�)

jY
l=1

(nl + 1):

For our two-dimensional example (3) we have: CIi(�) = 2,
CIj(�) = 9 and the complexity of MCR-based computations
is equal to 9(n2 + 1) + 2(n1 + 1)(n2 + 1): Consideration of
the same example with changed order of variables (5) gives
CIi(�) = 2, CIj(�) = 3 and the complexity of MCR-based
computations is equal to 2(n1 + 1) + 3(n2 + 1)(n1 + 1).

In addition to the cost index, we introduce another com-
plexity function lu(�) which is de�ned as follows:8>>>>>>>><
>>>>>>>>:

0; if mvar(�) � u,
1 + lu(�1); if � = f

u
'0;�1;�1gu ,

max(lu('0); lu(�1)); if � = f
v
'0;�1;�1gv& u � v;

6p;
if � is trigonometric MCR in u of the length p,

maxj=0;:::;p(lu(spartj); lu(cpartj));
if � is trig. MCR in v of the length p, u � v,

lu(�(1)) + : : :+ lu(�(s)));

if � = P (�(1); : : : ;�(s)):

It is easy to see from their de�nitions, that lu(�) � CIu(�)
and the value lu(�) does not depend on the order of vari-
ables (we will use this fact later). Returning to expression
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(3), we have li(�) = 2; lj(�) = 3. For expression (5) we still
have li(�) = 2; lj(�) = 3.

During conversion of a given computational task (1) into
an MCR expression � it is straightforward to compute vec-
tors l = (l1; : : : ; lm), c = (c1; : : : ; cm) such that lj = lj(�),
cj = CIj(�). We can use the fact that any constant ex-
pression can be associated with vectors l = (0; : : : ; 0), c = l.
Each variable ij can be associated with l = (�1j ; : : : ; �mj),
c = l. Given �0; l0; c0 and �00; l00; c00 it is easy to compute
l; c for � at the time of application of the simpli�cation
rule �0 ��00 ! �: From now on we asssume that whenever
we have an MCR expression � we also have the associated
complexity vectors l; c. Our complexity measure depends
only on the number of operations required. It does not dis-
tinguish di�erences in complexity between operations, for
example the di�erences in complexity of addition and mul-
tiplication. This approximation is adequate for hardware

oating point arithmetic. For more complicated computa-
tions one can easily expand all the de�nitions using weights
of operations (as in [17]).

3 Delayed simpli�cations and variable ordering

We start this section with the observation that the earlier-
described algorithm to construct MCRs solves one of the
problems mentioned in Section 2.1. Namely, it solves the
problem of constructing CR representations in one parse of
the input expression. However this algorithm is still suscep-
tible to an exploding number of intermediate expressions.
We address that problem in this section. It can be seen
from examples that other approaches to improvement of the
MCR scheme are possible. If straightforward MCR con-
struction is used, there are many CRs with common sub-
chains in the resulting MCR-scheme (as in equation (3)).
Most of these common subchains can be found even with-
out any additional search (as in [11]), because after some
transformations we know in advance that resulting CRs have
common subchains. However, additional overheads to han-
dle all cases like this are unavoidable. Here we consider an
approach which leads to roughly the same complexity of the
resulting scheme, but often reduces the time of MCR con-
struction. This approach also allows us to obtain easily an
approximate solution of the variable ordering problem.

3.1 Delayed MCR simpli�cations

The notion of delayed computations (lazy computations,
mixed evaluation) is widely used in the theory and practice
of computer programming. We �rst demonstrate an idea of
delayed simpli�cation on the example of the Horner scheme
for bivariate polynomials.

Consider a polynomial P (x; y), deg(P; x) = s,
deg(P; y) = q, represented by (s + 1) � (q + 1) matrix
of coe�cients. It's easy to write a 2-dimensional Horner
scheme to compute values P (x; y) over nxny points x =
x1; : : : ; xnx , y = y1; : : : ; yny . If x corresponds to the in-
ner loop, the complexity of these computations will be
c1 = nxny2s + ny(s + 1)2q: What if this polynomial is of
the form P (x; y) = f(x)�g(y)? We can expand it and again
use the matrix of coe�cients of the expanded polynomial,
and obtain the scheme of the complexity c1.

Another possible solution is to not expand, but use two
linear arrays to represent these polynomials, which gives a
scheme like:

for y = y1; : : : ; yny do

a := g(y); {Horner scheme for g(y)}

for x = x1; : : : ; xnx do

store a � f(x); {Horner scheme for f(x)}

od od

with complexity c2 = nxny2s+ ny2q + nxny (the last term
occurs because we keep performing multiplication by a in
the innermost loop).

Alternatively we can delay expansion to the point in the
computational scheme where the value of g(y) is already
computed and still represent polynomials f(x) and g(y) by
linear arrays:
for y = y1; : : : ; yny do

a := g(y); {Horner scheme for g(y)}

multiply all coefficients of f(x) by a;
for x = x1; : : : ; xnx do

store f(x); {Horner scheme for f(x)}

od od

This scheme with delayed expansion has complexity:

c3 = nxny2s+ ny2q + ny(s+ 1):

The last term here is the complexity of delayed expansion.
It is easy to see that c3 < c2 when s + 1 < nx and c3 < c1
when 1 < (2q � 1)s, i.e. delayed expansion gives the best
solutions for all polynomials of the form f(x)g(y) of degree
greater than 1 if the corresponding computational task is
\reasonable". This last scheme is a compromise between the
�rst two: it keeps the advantage of expanded representation
for the inner loop, and reduces the number of operations in
the outer loop.

MCR representation of polynomials is analogous to the
expanded form. A similar approach to the above gives
an MCR-scheme with delayed simpli�cations (expansions).
Looking closely into CR-simpli�cation rules [11] we �nd a
small number of rules which lead to the replication of con-
stant subexpressions. In the linear CR case, these rules have
to be applied unconditionally to decrease the complexity of
the linear CR-scheme. In the MCR case these rules turn
into rules which can replicate arbitrary (not necessarily con-
stant) expressions. Unconditional application of these rules
decreases the complexity of the innermost loop but can lead
to an increase in the complexity of outer loops (as we have
seen in examples). Let us consider all rules of the form

��	! �; (u = mvar(�); v = mvar(	); v � u);

which lead to replication of MCR expression 	:
1. � = �
a) � is pure-sum in u, 	 is pure-sum in v;
b) � is pure-sum, 	 is an arbitrary MCR expression;
c) � is a trigonometric CR in u, 	 is an arbitrary MCR
expression;
2. � = ^

a) � is pure-product in u, 	 is pure-sum in v;
b) � is pure-product, 	 is an arbitrary MCR expression;

During MCR construction we have to check all of these
rules before simpli�cation, and as the result of the check we
can possibly delay simpli�cation to the interpretation time.
The decision about the delay is made on the base of infor-
mation from higher levels of an expression to be simpli�ed.
It allows possible future simpli�cation in u. This means that
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simpli�cation has to be delayed only if any future simpli�ca-
tions (say addition of pure-sum in u MCRs) are impossible.
Since the procedure of MCR construction is recursive, we
can easily keep information about higher levels of the ex-
pression to the moment of making concrete decision. This
strategy allows us to keep innermost loop as simple as possi-
ble and prevent replication of MCR expressions in variables
with least precedence.

Technically it means that as the result of simpli�cation
of, for example, the expression
f
u
'0;+; '1;+; : : :+; 'kgu �	

instead of
f
u
'0	;+; '1	;+; : : :+; 'k	gu

we can have
f
u
'0;+; '1;+; : : :+; 'kgu �v 	

where � denotes delayed multiplication and v is the delay
variable. The MCR construction time is reduced in this
case, because the delay stops recursive calls of simpli�ca-
tions of MCRs in v. During interpretation, as soon as we
enter into the loop in variable v and replace all CRs in v
by their values, we can perform simpli�cations delayed by
variable v. In order to obtain an interpreter for the delayed
MCR scheme it is enough to add only one option to the def-
inition of function Valueu:
Simplify( Pu(Valueu(�

(1)); :::; Valueu(�
(s))),

if � = Pu(�
(1); :::;�(s)) and Pu is a delayed operation;

The procedure Simplify used here is not the same as is
used on the phase of MCR construction. It is a hardcoded
procedure which performs simpli�cation over MCR with nu-
merical components and numerical constants. In the case of
code generation delayed simpli�cations are taken into ac-
count by inserting actual code to perform this simpli�cation
into generated procedure.

Let's consider the expression from Example 1. If we use
delayed MCR construction rules, we obtain the MCR ex-
pression with delayed by j multiplication:

f
i
�1;+; 1;+; 2g

i
�j f

j
2; �; 1

16
; �; 1

16
; �; 64g

j
:

The result of code generation will look, in this case, like:

cc0:=2; cc1:=1/16; cc2:=1/16; cc3:=64; # CR in j

cc4:=-1; cc5:=1; cc6:=2; # CR in i

for _cc1 from 0 to nn1 do

cc7:=cc4*cc0; cc8:=cc5*cc0; # delayed CR-

cc9:=cc6*cc0; # multiplication

for _cc2 from 0 to nn2 do

aa1[_cc1,_cc2] := cc7;

cc7:=cc7+cc8; cc8:=cc8+cc9 # shift in i

od;

cc0 := cc0*cc1; cc1 := cc1*cc2;

cc2 := cc2*cc3 # shift in j

od

It is easy to see that the outer loop becomes simpler than
before. At the same time the inner loop remains of the same
complexity as before.

3.2 Variable ordering

It was already shown in an earlier example that the complex-
ity of the MCR scheme depends greatly on variable order.
The problem of choosing the \optimal" order in the general
case needs exhaustive search. It also can turn out that dif-
ferent variable orders are necessary for di�erent subexpres-
sions of the given expression F in order to reach the optimal

scheme. It was shown in [17] for the 2-dimensional case, that
some heuristics and reconstruction of the general interpret-
ing scheme (splitting loop (*)) allow keeping the \optimal"
order for di�erent subexpressions. However, in the general
case this approach leads to rather complicated memory man-
agement. Even in the 2-dimensional case, this approach de-
stroys some of the CR computational features (e.g., some
operations and function calls of exp; sin etc. which could
be removed with a straightforward scheme, remain in the
innermost loop). We propose an approximate solution of
the ordering problem which is easy to implement to making
on the 
y ordering decisions and keeps the general MCR
interpreting scheme ((**)) unchanged.

We start with a simple polynomial example. Let F
from (1) be a polynomial with lj = degij F << nj and

we use a Horner scheme to compute values of F . Under
these conditions an easy solution exists. We sort degrees lj
and reorder variables i1; : : : ; im into ik1 ; : : : ; ikm such that
lk1 � lk2 � : : : � lkm . This gives an m-dimensional Horner
scheme of the smallest complexity.

In the case of a delayed MCR scheme, the values lu(�)
from vector l = (l1; : : : ; lm) de�ned in section 2.6:
{ do not depend on the order of variables ij from computa-
tional task (1),
{ o�er good approximation to values of CIu(�) (in fact lu(�)
is the lower bound for CIu(�) which does not depend on the
order of variables).
We can use these values for an approximate solution to the
ordering problem. The solution is determined using three
steps:
1. Construct an MCR expression with delays w.r.t. an ar-
bitrary order (and compute vector l at the same time).
2. Sort values lj and change the order of variables ij so that
lk1 � lk2 � : : : � lkm .
3. Reconstruct the MCR expression w.r.t. the new variable
order.

It turns out that due to the delayed MCR simpli�cation
scheme, the third step does not involve reconstruction from
scratch of MCRs w.r.t. the new order. It may require only a
few additional simpli�cations. Return to Example 2. After
step 2 in this example we have an MCR expression, which
does not depend on the order of variables i; j. If the order
is changed we can start reconstruction from this step. Tech-
nically it is easy to implement, especially in Maple due to
remember tables. We just once more call the procedure to
construct MCRs w.r.t. the new order and the remember ta-
ble mechanism prevents reconstruction from scratch. In our
C and Java implementations we use a weaker, but similar
approach. Each node of the expression F parse tree after
the �rst stage of the MCR construction contains a pointer
to MCR expression which corresponds to the sub-tree with
root in this node.

4 Implementation

4.1 Maple MCR package

Our Maple implementation is a general purpose library level
package which provides the MCR construction procedure,
the set of MCR interpreting procedures and the MCR code
generator. The implementation allows user-de�ned func-
tions in the input expression (list of expressions), an ar-
bitrary computational domain etc. The MCR construction
procedure together with all parameters of an initial com-
putational task, accepts optional arguments which turn on
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(o�) the delays-based scheme and/or the choice of an ap-
propriate variable ordering scheme (as described earlier).
Whenever some of the parameters of the computational
task (initial values, steps) involve symbols, the code gen-
erator assumes that the generated procedure will be used
several times. The generated procedure is correspondingly
parametrized. The code generator calls standard Maple op-
timize facilities to handle common subexpressions.

Example 3. For the computational task sin(x) exp(y)+
f(2x), x = a; a+ I; : : : ; y = b; b+ I; : : : (f is a user de�ned

or unde�ned function, I =
p
�1) we obtain the following

procedure:

proc (aa1, nn1, nn2, b, a)

local cc0, cc1, cc2, cc3, cc4, cc5, cc6, cc7, cc8,

cc9, cc10, _cc1, _cc2, t1, t2, t3, t4;

cc2 := 2*a; cc3 := 2*I; t1 := sin(a); t2 := exp(b);

cc6 := t1*t2; t3 := sinh(1); cc7 := I*t3; t4 := cos(a);

cc8 := t4*t2; cc9 := cosh(1); cc5 := exp(I);

for _cc1 from 0 to nn1 do

cc1 := f(cc2); cc4 := cc6;

for _cc2 from 0 to nn2 do cc0 := cc1+cc4;

aa1[_cc1,_cc2] := cc0; cc4 := cc4*cc5 od;

cc2 := cc2+cc3; cc10 := cc6*cc9+cc7*cc8;

cc8 := cc8*cc9-cc7*cc6; cc6 := cc10

od

end

One can use the Maple C function in order to generate C
code based on the MCR scheme.

Consider the following computational tasks:
1. sin(x+ y); x = �1::1; y = �1::1
2. (1:3)x sin(y); x = �1::2�; y = 0::�
3. x exp(�x2 � y2); x = �2::2; y = �2::2
4. 1:31:2x�1 cos(1:5x) sin(1:5y); x = �2::2; y = �2::2
5. (1:3)x sin(uy); x = �1::2�; y = 0::�; u = 1::8
6. [x; y; (1:3)x sin(uy)]; x = 1::3; y = 1::4; u = 1::2
7. sin(cos(sin(exp(x15 � y15 + x3 � x15 + y15 � x3) � 1)(x5 �
5y))); x = 0::1; y = 0::1

For all two-dimensional examples we used grid [100; 100] and
for all three-dimensional examples we used grid [50; 50; 20].

Table 1 represents the timing results for computational
tasks 1{7 using Maple V.4 (R4), Maple V.5 (R5) and MCR
(construction, code generation and running time) on DEC
Alpha 1000/800s with 256 Mb RAM. When Digits was set
to 10, the code was run under evalhf. For timing compar-

D R4 R5 MCR MCR MCR
constr. codeg. run

1 10 0.946 0.378 0.033 0.033 0.217
30 8.269 9.698 0.049 0.032 6.82

2 10 1.087 0.532 0.06 0.02 0.107
30 15.317 16.708 0.076 0.021 1.93

3 10 1.074 0.428 0.041 0.024 0.193
30 35.739 37.756 0.061 0.025 5.02

4 10 1.452 0.646 0.086 0.033 0.229
30 27.135 26.407 0.124 0.032 7.302

5 10 7.815 7.497 0.076 0.039 0.559
30 360.146 336.587 0.097 0.040 18.043

6 10 20.482 20.356 0.107 0.073 1.621
30 478.558 485.819 0.141 0.073 35.599

7 10 0.907 0.396 0.004 0.009 0.059
30 10.185 10.248 0.016 0.009 0.748

Table 1: Maple timings in seconds (D � Digits here).

ison purposes, only the computational parts of plot3d and
animate3d were run. After recent improvements in Maple
plot3d, animate3d and hardware 
oat arrays, the speed
gained by an MCR-generated procedure under evalhf is not
very impressive. But there is still room for progress, since
the current slowdown of the MCR-scheme under evalhf is
caused by evalhf architectural features. Our C implemen-
tation (see next subsection) using an internal representation
very similar to Maple's internal representation, shows a fac-
tor 4-8 speedup in comparison with the same MCR scheme
in Maple under evalhf. However, when we switch to evalf

(increasing the accuracy of computation to 30 digits), the
MCR generated scheme is much faster then Maple's evalf.

4.2 Standalone MCR engines

In this section, we describe brie
y two standalone implemen-
tations of the MCR technique in C and Java and demon-
strate their practical use.

4.2.1 C implementation

A standalone C MCR engine, built on the top of small sym-
bolic kernel, is implemented in ANSI C. This engine can
be linked to any application (under UNIX, MSDOS or Win-
dows) as the library or can be used as an executable program
accepting computational task from standard input. This en-
gine is able to handle multivariate computational tasks and
uses a complete set of MCR simpli�cations including a de-
layed MCR construction technique.

Table 2 presents the timings of the examples from the
previous subsection on the same machine (we repeat Maple
timings here for comparison):

Maple Maple MCR engine MCR engine
(constr. (evalhf) (constr.) (running)

+ codegen)
1 0.066 0.217 < 0:01 0.05
2 0.08 0.107 < 0:01 0.017
3 0.065 0.193 < 0:01 0.034
4 0.119 0.229 < 0:01 0.034
5 0.115 0.559 < 0:01 0.200
6 0.180 1.621 < 0:01 0.434
7 0.013 0.059 0.05 0.017

Table 2: Maple and C timings in seconds.

4.2.2 Java implementation

Our Java implementation is a package of classes which can
be easily included in any Java project. It provides basic
methods for MCR construction and interpretation. Input
expressions can be either in the usual in�x form, or in Open-
Math SGML/XML encoding [19]. The evaluation domain
can be 
oating point or Java BigIntegers.

In order to show the ease of use of the JMCR engine
we used the SurfacePlotter [20] available with sources on
the Gamelan web site and replaced the computational part
of this plotter. The timing comparison of the native Sur-
facePlotter interpreter and the JMCR engine is shown in
the Table 3. These results were obtained on a Pentium 200
with 64 Mb RAM (we include Maple timings on the same
machine for scaling).
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Maple Maple Surface JMCR JMCR
constr.+ (evalhf) plotter engine engine
codegen (constr.) (run)

1 0.041 0.120 3.856 0.100 0.030
2 0.050 0.131 4.016 0.100 0.020
3 0.040 0.070 4.326 0.070 0.040
4 0.070 0.110 3.455 0.050 0.130
5 0.100 0.300 | 0.040 0.341
6 0.111 0.320 | 0.070 0.510
7 0.020 0.030 3.875 0.090 0.040

Table 3: Java timings in seconds.

The live demo of the JMCR engine is available on
http://scg1.uwaterloo.ca/JMCR.html. It is possible to
run and compare times for di�erent computational tasks
with the SurfacePlotter interpreter and JMCR engine. As
well, the SurfacePlotter with its computational part replaced
with JMCR can be run to compare the plotting quality.

There is a special-purpose 2-dimensional implementation
of the MCR technique (MPCR-server [17]), which combines
some variable ordering heuristics with very careful imple-
mentation of the interpretation scheme. Observe that this
MPCR-server can not handle 3-dimensional examples, and
it is valid only over the real number computational domain.
Moreover, it does not support proper simpli�cations: for
computational task 7 (section 4.1) the MPCR-server gener-
ates 103 lines of C code, when the expression is equivalent
to sin(1). Heuristic procedures in [17, 15] are based on a
\weak" de�nition of the degree of polynomial, which lead
to such inadequate results. However, some ideas from this
implementation can be combined with the delayed simpli-
�cation technique, which may lead to further speedup of
CR-based computations.
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