
How Fast Can We Compute Products?

V. Kislenkov V. Mitrofauov
Dept. of Corup. Math. & Dept. of Corup. Math. &

Cybernetics, MSU Cyberuetics, MSU
Moscow 119899 Russia Moscow 119899 R.ussia

kvvQcs.msu.su mitrofanQcs.msu.su

E. Zirna
Synlbolic Colnputation Group

University of Waterloo
Waterloo, Canada

ezima@daisy.uwaterloo.ca

Abstract

III this paper we consider the problem of fast computation
of n-ary products, for large n, over arbitrary precision inte-
ger or ra.tional number domains. The combinat.ion of loop
unrolling, chains of recurrences techniques and analogs of bi-
nary powering allows us to obt.ain order-of-magnitude speed
improvements for such computations. Three different imple-
ment,ations of the t,echnique (in Maple, C++ and Java) are
described. Many examples together with timings are given.

1 Introduction

.4n arbitrary precision arithmetic is undoubtedly the “work
horse” of general purpose computer algebra syst,ems and IIU-

merous specialized packages. Adva.nced algorithms to per-
form basic opcrat.ions on arbitrary precision integers are very
well known. Many books [l? 4, 71 give overviews of those
algorithms together with detailed implementation remarks.
Most comput,er algebra systems (such as Maple [3]) and spe-
cialized number t.heory packages (such as KTL [8]) contain
implementations of these algorithms. For example for mul-
tiplication t,hey typically use the Karatsuba [i] algorithm.
Even some general-purpose programming languages have ar-
bitrary precision arit,hmet,ic. As esamples, Java has BigIn-
tegcr as a core API class in the language, and C may be
extended with the GNU Project’s gmp library.

Section 4.3.3 in [7] is entitled “How fast can WC multi-
ply?” III this paper we would like to address a related prob-
lem and t,ry to answer the question “how fast we can com-
pute n-ary products for large n?” By “compute” we mean
obtaining the exact integer or rational result. By “product”
we mean:

F(u) = (I1 nz . . UII = fiw, (1)
,=I

where ni E 2 or &. We are interest,ed in cases when o.% and
n arc lasge numbers. We also assume that (ii = f(i): i.e. can
be written as closed form expression in i.

Permission to make t1igit.A or hard copies of all or part. of this work for
personal or classroom use is granted without fee provided that. copies
are not. ~nade or distributed for profit, or commercial advantage, and
t,hat copies bear this aot.ice and the full citation on the first. page.
‘10 copy otherwise, I.0 republish, to post, on servers or t,o redist.rihute
to lists. requires prior specific permission and/or a fee. ISSAC! ‘99*
Vancouver. British C:olumhia. C!anda. @ 1999 ACM L-58113-073-2
/ 99 / 07 $ 5.00

Computational problems like (1) are not rare in practice.
Such problems arise for example in the evaluation of series
of rationa. numbers [2, 51. A typical approach to the com-

put.ation of (1) is binary splitting, which does not reduce
operational complexity. The binary splitting algorithm is
asympt,otically faster then repeated multiplication only if
multiplication of n-digits integers is asymptotically faster
than O(n,“). In this paper we will show how it. is possible
to reduce both operational and bit-complexity of (1). Our
main effort will be to reduce the number of multiplications
and to replace as much of the remaining mllltiplications as
possible by multiplications of smaller in size numbers.

Many familiar computational problems can be written in
form (1). For example,
a) n, = c (constant): F(n,) = c”,
b) ni = 1:: F(n) = n!,
c) oi = (c + i - 1): F(n) = (c)~ (rising fact,orial power),
d) ai = F: f’(,n) = (c),
and so OIL

Case a) has received a lot of attent,ion and one has very
efficient solutions - variations of binary powering algorithms
[4, 71. In current softwvare, cases b) through d) are imple-
mented by iterated multiplication. Such naive implementa-
tions are slow, relative to what has been achieved for caSe a).

Consider three very simple computat.ional tasks
Tl. Compute 7789’0000.
T2. Con1put.e 20000!.
T3. Compute (;;:‘;;i).
For these tasks the number of decimal digits in the answer
is between 75000 and 78000. Table 1 contains timings ’ for
these 3 tasks obt.ained on P-200 wit,h 64 Mb of RAM, in
Maple, C++(NTL) and Java.

Table 1: Time in seconds for 3 computational tasks in 3
systems.

Times for T2 and T3 are much worse than times for Tl.
It is not surprising since binary powering is used for Tl. WC

‘Factorial and powering are implemented in the knrnrl of Maple
(compiled). and binomial is implcmenled in Lhe library (irlt.erpret.ed).
The pnrenl hesizcrl t imcs WP t.hc t.imes for an interpreted factorial antI
powering.

will describe some approaches to the improvement of t.imcs
for T2, T3 and more general tasks of the form (1) in this
paper.

There are scvcral different techniques which help to ac-
cclcrat,e computations of products. Some of them are system
dependent, some of them are general. We are particularly
int,erested in general techniques. That. is why we choose
thrco very d&rent arbitrary precision int.egcr arithmetics
for practical illustrations. Here are int,eresting fcaturcs of
these arithmetics.

Maple (Yla1>le V Release 5): the base for integer arith-
metic is some power of IO (depending on plat.form); our im-
plrmcnt,at.ion is library 11.~4 Maple code. We have essentially
no control over t,he internal representat,ion of integers a.ntl no
control at all over memory allocations and reallocat,ions.

NTL (NTL 3.02): the base for int.eger arithmet,ic is some
power of 2 (depending on platform); our imple~iieiit.at.ion is
C++ code; we have control over the internal reprcscnt.ation,
memory allocations and also over algorithms (for example
wc can force KXiLtSllh algorithm for multiplication t,o be
enabled/disabled).

Java (JDK 1.1.7): the int,ernal representation and implc-
mentation of the basic arit,limctic over BigIntcgcrs are inac-
cessible; we have no control over the internal representation
and very limited information about. ~~lgorithms used.

We will show in t.his paper that some improvements can
be obtained for all of t,hese systems due bo our general ap-
proach to t.hc acceleration of comput.ation of products. How-
cvcr, better results in absolute t,imings (see Tables 3-5) are
obtained with iXTL where we can combine t,he general ap-
proach with several t,echnical improvcmcnts, t,aking advan-
t.age of knowledge gained from iXTL sources and using special
feat,ures of concrete problems.

For our purpose we will combine several different, t.c:ch-
niques, wvcll known in the t,heory and practice of optimized
compiling and fifit. computations: birrary powering, loop un-
rolling, (-hains of recurrences, etc. The chains of recurrences
l.c:chnique is proven to give good results in accelerating iter-
ative tronlput,aLions over regular iIltervi&. One of the objec-
tives of this paper is to show how t.his t,echnique can be used
to accelerate one-point evaluitt.ion of a function. especially
in cases when this evaluation is c:omputationall~- intensive.

The rest of t,hc paper is organized as follows. In Sec-
tion 2 WC recall some nec.essary opt.imizing techniques and
give a brief discussion of bit-complesit,v. In Section 3 we
present c0mbiniUAms of loop unrolling and chains of rccur-
rences tcchniquc5 to ilCWh?riltC problem (1). In Section 4
WC giw an iHlillOg of binary powcrin g for comput.at,ion of
facl.oriills. Sect.iou 5 dcscribcs inlplcmcntations of our algo-
rithms. Section 6 COUt.iLiIlS concluding discussions and plans
for future works.

2 Preliminaries

2.1 Loop unrolling

Loop unrolling is an opt.iinization l.ri~nsfOrmilt.iOIl widely
used in optimixing compilers. It. replicates t,he body of a
loop some number of t,imcs called the unrolling factor (v)
illld itcriltes by SteIJ 1: iIlStt~ild of step 1. Unrolling ca.n im-
prove the performance becallse

0 it retluccs loop overhead ‘I! t,imes;

0 ot.hcr opt.imizations become possible (e.g. it 11iay lx
possible t,0 find common subexpressions in rcplicatcd
instances of the loop body).

Since all computational tasks considcrcd in t.his paper can
be rcwrit.ten as loops, we will use a technique simi1a.r to
unrolling as one of our t,ools.

Remark 1. We can say in advance that in the cast of ar-
bit.rary precision integer computations, loop unrolling alone
can not. help materially. Loop unrolling must be combined
with ot.hor t~echniques in order to obtain significant, speed
improvement,s.

Consider an integer I: > 1 and rewrite ‘~1 in (1) as 71 =
X: I: + I (0 5 1 < 1:). In terms of (1) loop unrolling can bc
expressed as

If o, = c: 1: = 1:. , n. and 1 = 0 (for simplicity) then the
computation of F(7)) = c” can be written XS

b := l-y=, c; F(n) := p=, b.

Remark 2. We write the schcmc in t,erms of products
as above, giving rise t,o the following program:

b:=l; for j:=l to v do b:= b * c od;
f:=l; for i:=l to k do f:= f * b od;

This program was obtained by the application of loop un-
rolling (factor U) to the loop computing c(‘O) by repeated
mnltiplicat,ions, and by application of substit.utions and code
mot ion t;o the result of unrolling.

Of course, the program above can not, compete with bi-
nary powering, but we will use it. as a base-line model in
our discussions. Observe that repeated multiplication ta.kes
kv multiplications while the unrolled program takes li + II
multiplications. III t,hc case of a fixed point, computation if
k and 1: arc chosc:n SO t,hat, k M ‘11 M fi, t.he unrolling gives
fi - speed improvement..

Remark 3. R.epeat.ed multiplication is rarely used in
practice, but we tinic it. t,o provide a basclinc for compar-
isons. In computation of products (1) we will compare re-
pea.ted multiplication, unrolling and binary-like mAhods.

2.2 Chains of recurrences

Chains of recurreuces (CR.) is a techuiyue to xcelerate it-
erat,ive computa.tions. This technique has proven to be of
practical use in cases when evaluation of a closed form es-
pression has to be performed over regular intervals [G, 10, 111.
Here we will show that t.his technique can be useful when we
need t.0 c0niput.e a single Value. In t.his paper we will use
only simple chains of recurrences and simple CR.-espressions.
We recall briefly ncccssarv definitions and fact.s and describe
usefill t,ransformations of’ CRs.

2.2.1 Definitions.

Given constants PO,. . . : vk-1, a. function fk defined over
NU{O}, and operators ::>I,. , ‘:;;k equal t.0 either + or *:
WC define a G’llcGn of Rec~~rwnces (CR) as the set, of func-
t,ions fo.fl,... . fk- I(fk such that for 0 5 .i < L

Further: to dcnot.c CRs (3): we will use t,he short.hand

f,,(i) = a(i) = {~0,0~:~~~,~3:2,~~‘, i;jk, fk}(i). (4)

For example?
f(i) = i = (0: +, l}(i),
f(i) = i” + 2i = (0, +: 2, +: 6: +: G}(i),
f(i) = i! = (1, *? 1: +, l}(i), etc.
Recall t.hat in (4) lc is called the length of CR. @; @ is simple
if fk(i) = ~b is constant. espression; + is a pure-sum CRz if
(31 = :.:,z = zz !‘:‘:A. = +’ .
a p = {$&.:G,.+lr~r+l:. .l O~.!fk}: (0 2 r 2 k) is called
r-order sA+ain of the CR @. Expressions with CRs as
opera.nds are called CR-expressions.

Here we will deal primarily Ah simple CRs and CRs
whose first order Slll~ClliLill is an expwssion involving simple
CRS; for esaml>le
(Y) = {l.*, w} which gives the well known recurrence

(y) = (iyl) * in CR notation.
All CRs above assume that i start,s at 0 and steps by

1. However we will use CR.s with variable start.ing and step
values. Accordingly we cstend the CR notation a.5 follows

For csamplc; i! = {l, *: 1, +. l}(i = 0, 1): at the same thne
i! = (1, *, 2, +, 10: +, 8}(1 = 0,2), or

ilt the SiUIle time

71
0 i

= tl,*> {nS-71,+:-4n+6,+,8}
(2, +, 10, +? S}

}(? = 0: 2).

2.2.2 Value and shift of a CR.

Interpretation of CRs is based on function Value and
shift, operator E which a,re defined as follows. Given
CR-expression a,
Value(+) =

i

c; if + is a constant. expression c
~0: if + = {~,,:(<:1.q:.. ,c:.:k,fk}
F(Value(@,)?. ?Value(+,,,)),if @ = F(91.. :*,,I) ,

E(a) =

{

c; if * is a consta.nt expression (
{~“~I:lIpl,:<~l,~,-1 (31Q,. . , pk-I NkValue(fk),BA., E(fk)}

if 9 = {v,jz c:l ,y1; (?k:fk}
F(E(+l), . . , E(+IN))y if ip = F(*l?. . : %?,,)

Fnnct,ion Value(S) r&urns the current value associated
with a CR;exprcssion, E(a) returns a CR-expression up-
dated for the next. value of i.

It is usrful to have specialized definitions of Value and
E for simple CRs and CR.s wit.11 simple CR-expressions as
subchains:

2.2.3 Fast method to change the step of a CR.

Assu~m we are given a simple pure-sum CR

~(i=O,l)={~~~+:~~~+,~:! +,pr;}(i=O:l)

which corresponds to a pOl~IlOlllii~l P(i) of dcgrw X: in i with
the table of finite diffcrcntes y,-, ,+?I, 92: , q,+. How can we

find the CR,

without rec:onst,ructing it from scratch?
We call the corresponding transformation a fuctor II CR

lln~rolling and denote it Zr,, : *(i = 0,l) + 9(i = 0?7:).
Let I : @ + @ be identity t,ransformation. Writ,e 9 as
+ = {+90, +. 91}(i = O? 1) where +p~ is t.he first. order sub-
chain of @. After II st.eps of c:omput.ations with this CR we
hilkY?
+(i = 7~: 1) = {cp” + Value(rPl) + Value(E(SI)) +.

+ Value(E’-‘(+I)), +, E”(*l)).
From hcrc
31 = Value(+(i = (!: 1)) - Value(O(i = 0: 1)) =
= Value(+l) +Value(E(+,)j +. + Value(E’-l(+l)) =
= Value((l+ E + E’ + . + IT1)(@l)).
Now consid(lr HI = ($1~ +: &z} where 42 is first order sub-
chain of (I+E+E’+. :+E’-’) (+I) and perform the same
transforniat.ion:
Value((1 + E + E” + + El’-I)(&)) gives 2j’z. Cont.inue
the sa.me procedure for 3d, 4th, order subchains we get.
the following general formula:

where +,j is j-order suhcha.in of CI,. Kate, that these trans-
formations work exactly the same when starting value for %
differs from 0.

We iKe particularly int,erested in transformation lY>
which doubles the step of a pure-sum CR.:
ZJZ : 9(i = 0: 1) + \E(i = 0,2), where Q(i = O! 2) =
= (9”. +: Value((1+ ,??)@I), +: Value((l + E)‘&), +,

..‘1 +.Value((l+E)‘+A,)}.
Computationally all this is much simpler than it looks at

first. glance, 1,ecause application of (I + E) to + 1 applies the
same operator t.o all subchains +‘:!? &, : @‘I;. That means
t,hat an a.nalog to t.hc Horncr scl~cn~c is possible. Let. us writ.c
the algorithm to perform transforniat,ion Zrz:
Input: $90:$?1:~2~...~pk.
output : ?/Jo: $1 : 7)!g i : $>A..

for i:=O to k do GA := q”l od;
for i:=l to k do

{ apply (I+E) to subchain @,)
for j:=i to k-l do

.& : = 2 t/.,, + $j + ,
od;
,1/Q. : = 2&.

od;

This multiplic:;~tio~-fr(!(! ’ algorithm gives us the possi-
bility of doubling the st,ep of a pure-sum CR very fast. It,
will be used as one of t.he main tools for fast comput,at.ion of
products. Consider an rsample: given
i” - 21: + 1 = a(.. - L - 0,l) = {l.+,-1,+,6,+,6}(i = 0;l):
t.he following intcrmediatc CRs appear during computation
of u2(*j:
{1:+>4,+:18:+,12} + {1;+>4,+,48:+,24} +
{1:+.4,+.48:+,48} =Z&(+).

“Mulliplication by 2 can lx performrd by hardware shift in NTL.
ix cm Ix writ.wll i&s th ’ additioil ill hlnple.

77

@(i = O,Zl) = F,.({$7,), *,‘l,*}(i = 0; 1)) =
{po: *; @*}(,i = I),?!) =
{q():*.Ii,.(9*) C’,,(E(a,))‘. .’ ri,#(E’~-‘(@l))}(i = o,?:).

Here Q 1 is a pure-sum CR oht~aincd a.s the result. of nmltipli-
cation of ‘u CRs U,,(EJ (+I)). ,j = 0,. , 1: - 1 and is v t.imes

longer that. CR for @ 1. In the Sec011cl G+.W We 11ave

Q(i = 0:2:) = U,:({qo;*; ?}(i = 0.1)) =

($70: *. $>(i = 0, u) =
iGO. *. lyw,>(E(rl)). ..: r’,:(EL‘-l(A)) jCi = ()

’ ’ 1 ,.fr).ri,.(E(rj).....C:,.(~l;-l(I‘)) ;I! ,)

Here a.gain the numeri~tor and t.hc: d(~nonlinat.or 0f ql are
pure-sum chains 1: t.irnw longer t.lian A and I? respectively.

EXilIIl~~lf?. Let +(i = 0: 1) = {l? *. l? +: 1) which ddiIlf?S

i! for i = O! 1; 2,
u,(a) = {1.*~LI~({1~+,1}).~~~({2;+:1))} = {l,*:{l.+.‘L}.
(2: +: 2)) = (1: *: (2, +: 10: +:8}) = (1, *: 2: +, 10, +.s}(i =
0. 2). which tlcfincs i! for i = 0: 2: 4. . (or, what. is t.he same,

(2i)! for 1: = 0: 1: 2.. .).

2.3 Bit-complexity vs operational complexity.

In this subsection we show t,hat, t,heoretica.l estimates of COIII-
plcxity and practical Gmings may differ. In other w-ords bit.-
complcsity is not t,lio Only issue t0 worry about when we tr!
t0 iiCCd(!TRt.(! c~oml~lit.al.io~is of products.

Let us start with simple ohservat.ions. Consider the com-
lmt,at,ion of c” wlicrc 9t = 2”? and let L(w) denote the hit
length of an arbitrary precision intcgcr 0. ~~ssunic that, it
costs L((I)L(~) bit. opwat.ions to compute the product, ub
(no advanced multiplication algorithm is in use), and bhat
L(c2b) = L(U) + I;(b) (which is often the case md simplifiw
further estimi1tes). Compare t,llr coniplcsi t.y CP (1)) of rc-
pea.ted Iiiult.iplicat.ioIi (2” - 1 mllltiplic:i~tions) illld t,llc-! COIII-

plesitp C:,,(w) of binary powering (X: squaring):
C,.(n) = L(c)’ + 2L(c)’ + + (2”’ - l)L(c)” =

L(c)‘! .y;* i = L(c)’ (3[2”)’ - i2”) ;

Ch(ll) = L(c)’ + 4L(c)’ + . . + (2’k-‘)L(c)’ =

L(c)” c;:; 2” = L(c)’ ($” - 5) ;
C,(,L) _ 3 .I-.).?-’ - 1
m-7 A - .).

This sin& c:tiniatc co&ides wit.h a pessimistic statement,
about binary powering found in [7]: ‘*If \vvr wish to calcu-
lilt,? the esact multiple-precision va.lue of xn: when I is illl
integer greater than the computer word size, bina+y meth-
ods arc not much help unless ,rL is s0 huge that t,lic high-
speed multiplication roiltines of Se&on 4.3.3 arc involvc~d;
and such applications are rare.” Our experiments (see Ta-
blc 2) dlow t.lliLt. fwen when multiplication is IliLiW and 2
is an integer great.er than the computer wvord size, binq
powering is more tllil.11 2 times faster t1ia.n repeated multi-
plication. ‘This has a simple esplanation: the operational
complexity of binary powering is mllc:h Small(:r than t.hat
of repea.tetl Illult~iplicabion. There is a consequent reduc-
t.ion of rela.ted c0mploxit.y fact.ors, such as loop organiaat.ion
or memory managcmcwt, Ovc7ll~ildS. When :I: is an integer
smaller than the computer word size, binary powering is

much fi1St.W. \Vhen high-speed multiplicittion is available.
hinary powering is vast,ly superior.

For an unrolling powering. the sit,uation remains the
same. Return to the pr0gra.m in scct.ion 2.1 and estimate
the complcsit,y CI,. of wpcatcd muli;iplicatiorI versus t.lw com-
plcsity C,, of unrolling powring with the sa11le assumptions
;Il)Ollt L ilS ihOVf! i1Ild !I = Xf!:

C,(n) = L(cy + 2L(4 + . . + (x:?: - l)L(cy =
L(c)’)YLr’ ,i = L(c)’ ($k’v” - ih:) ;

C,,(,rt) = L(c)’ + 2L(c)’ + . . + (v - l)L(c)‘+
+L(h)’ + 2L(h)’ + . . + (k - l)L(b)’ =

L(c)’ y; i + L(h)’ -y-; I: =
(taking into accolmt, that, L(h) = L(c”) = ?!L(c))
= L(q; (k’.,,” - .,,!‘),+ + (-2 - ,,;)
- = 1 + k1.-k-r+1 C,.(n)
(‘8, f.11) l.k3-h.z.+v-, .

This analysis suggests that. sp~dup hecalls(l 0f unrolling is
less than 1 + -& in the best. (:a~: when li: and t! arc taken
approximately equal to each other. Experiments in Maple,
NTL and *Java (Tab 2) show that this is not, t,hc case.

10.0
10.3
5.9
Ii.5
6.7

40.0
9..1
R 0
6.5
fi .9

7. I

193.0
2.4
1.i
1.8
1 .s

x09.0
2.7
1.6
I .5
1.8
1.6

9.26
X.‘,
G.8
8.9
11.0

3 7 ti r,
R2.X
G.7
9.1
11.2
11.9

164.5X
x.1
4 .3
5.x
i.2

(is I .:34
34.8
.l.s
Cl.0
i.4
7.9

.X3.66 53.06
3.2 28.37
1.1 2. 5
1.1 3 3
I.1 3.9

‘220.0:3 210. In
3.3 38.9
1.1 2.5
1.1 3.‘4
1.1 4.0
1.1 .l .5

.I avil.

6.70
9.2
5.8
6.4
6.8

1 OX.lj9
:! .5
J .T
1.7
I .R

.177.6X
‘2.6
1.7
1.8
1.8
1.8

The speed improvement for unrolling is not as impressive
its that for the binar,y powering, but, it. is much bet.ter than
t.hwrc:tical cstimat,es indicate. The improvcmcnt depends on
t:lie size of the: lmw and t,lle system. It is also 11iuc11 ~Jetter

when bhe Iiaratsul)a. algorithm is enabled, because unrolling
gives m0re opportunities for this algorithm to hc applied.
\!‘e CXI ~YJIK~II~~ from this discussion thid fOI’ ollr IJIlrlJOSeS

t,hc main emphasis must be (a) trading multiplications for
additions and (1)) reducing the size of mult,iplicands. Th(l
c0st of the addition of arbitrary precision int,egcrs is almOstj
negligible in c:0IllpilriS011 wit,h the cost. of multiplication when
the length of the numbers grows.

78

3 Unrolling and CRs

In this section WC rlcrecrilw a corribinat,ion of unrolling and
CR-tcchuiquw t,o accdcratc conll)rlt.;tt.iorls of products. The
g~~ll~!lXl ill~1~rO;lCll is siniplv. Giwri (1) aud n let. 0, = f(i)
lx: l~01?;110111iid or ratioud funct~iori in i. IvC (‘ill1 reforniulate
(1) iu t.crms of CR

qi = 1.1) = {l, *; ‘Bl}(i = 1.1):

where @I is a. pure-sum CR of the lcngtli I for f(i) if f(i)
is il polynomial of degree I? or R CR-csprwsion of the form
A/r if f(i) is a rational function (licw A of the length II is
a pure-sun1 CR. for the nunwriltor of f(i) and r of 010 length
12 is a lmrc-sum CR for the tlenonrinator of I(,i)).

Now let 11 = kl:. Apply U,. t.o + and obtain the CR

9(i = 1,c) = (1; *> @l}(i = 1, (!). (5)

Conqmtat.ion of Value(Ek (q)) girts t,he value F($. Each
application of E to \k cods 1 Illult,il)licat.io~l ilnd /,r~ additions
if f(,i) is a. l~olgnoniial of degree I: or 1 IIIultiplic~iltion. 1
division ad ?!(/I + 12) ilcltlitions if f(i) is il rati0na.l fuuction
with il Illlllleril.t0r of tlcgrcc 1, ilIld il denon~inator of clcgrce
12.

This approach relics on the proper choice of t!: which in
the general cast is not obvious. Consiclcra.tion of concrete
probieni opens more opportunitic5 for inqxovenients.

Furt.lxr in t,his section w’c assume that I: will lx C(lllid to
sorue power of 2. The difference w-it.11 a.11 arlJit,rar?; ‘r* is in
t,he con~plcsity of filCtOr I: unrolling. If 1: is some power of
2 t.he unrolling (‘Xl be done by COnSCquC:nt, i~ppliration of Lrz
in 0(U’ 10 1:) adtlit.ions, whiltr in t.he case of arbit.rary ‘t! it
ta.kes O(viF, additions.

3.1 Factorial

Given a large int.qyr n, conqutc F(t)) = n!. R.ewrite the
product definition of r,! using thtr unrolling equation (2):

D-e arc conwrnetl about tlw first term A(k, I:) in this prod-
uct since 1! < (!. The innermost, product. in j defines ~wlcgrcc
~~OlynOuiial in i

instcad of (8) (note. thitt +J = $Cj/‘/:!:j = 0: . . , I:) Rlld writ.c
9 in (9) as

9(i = 0,l) = (1, *? l!!E(&)}. (11)

It is IlOw Striligllt~fOrwilrd to Clld that,

11<,(i) = ((i - I)?: + I)((; - 1)‘U + 2). ((i - 1)V + U)

which 11X+ to IJC coniput,ed for i = 1: 2: . k. Kow it is not.
surprising that the CR,-technicluc can help hrrez providing
each Villlle of this polynon~ial for t.lic price of 1: ;IdtliLions.
The question is how t0 constrwl. il CR. for p,,(i) lY!ilSOU-

ably, fast’! The general CR-colistrllct.ioIl procctlurc rcxpires
O(,fJ-) l~~ultiI~licilt.ions and O(G) additions. 5Vc will show
thiit we can awmqdish it in iIt most t: rrllill;ipli~a.t.ioIls ant1
O(,!’ log, 1:) iKMiti0uS if I: is il power Of 2 (Or ‘t’ multiplim-
t.ions and 0(,f:3) adtlitions for and iIrt>itrilry u; in cit.llclr of
t.his caws f! Irlult.iplirittiOlls is tllc prim of computing Ll!).

=I(k: 2:) = Value(E”(*)) =
= Value(P({l, *,v!E(&)})) =
= (r:!)“Value(E”‘({l. *:E(+)})).

(12)

\Vit.li this t.ralisforIllat.ioIl wc replace k Illult~i~~licirt~iOIlS in (9)
by k mult.iylicatioIls of r,!-t.inws snlallcr nurnlwrs plus OIIC

binary powering a.nd one cxt.ra Iii~ilt.il)licat,iorl. For Iargc
enough ‘71 witli proper choice: of r: ilIld 1: Lhis last. SCllVUl~!
is faster. lwcausc it. rcduccs t.lw t:inw of wnstrucdn of CR
& ilnd the t,inle of int.crprctation of tlic schcnic~ (brief analy-
sis will be given later). Tahlc 3 corkains timing for Sclm~~c
(12).

First wv olxervc Illat the ld~llonlii~l Remark 4. Obviously WC could start consideration b?
fiT(i) = i(i + I). (i + I! - 1) gives the sanx valuw for i = t,aking out, li! fiKt.Or frOn1 innernwst product: in (6). consitlcr
1, 1 + 0: 1 + 2V,. iiS p,.(i) for i = 1,2: 3.. . . polyu0uiial pr (i)/v! instead of pC (i) and arrive t,o t.llc same
Secondly, ohwrve that polynonkd sc11eu1~ (11). For us it, \vaS inlpOrtant t,O SIKW how this tri)nS-
jj,,(i) = i(i - 1). (i - 1: + 1) gives the HitlllC! values for i = fOrIlliil.i0~1 wOrliS in CR. not~ation, bN:ii.USe fOrUlUliW (10) CiUl

I:, 2r:, 3r:, as pu(i) for i = 1: 2: 3.. . . Now use the fact. [S2]
that PI.(i) hS R wry special and easy to const.ruct CR of t,he
lcngt,li li for i starting from 0 wit,11 step 1:

p,.(i)(i=o~l)={o:+,o;+ :O,+:?!!}(i=O.l). (7)

\Ve can apply Irlultiplica tion-free t.rRllsli)rnlatioIl CT? to this
CR. log, v t.inws and get

$,.(i)(i = 0, c) = +(i = 0: v) =
= {pc,; +: r-“l: f;. . . . +> gb.}(i = 0: t:). (8)

One applicat~ion of shift, finalizes the const:ruc:tion: the CR
E(a) lx&g int,erpretcd will provide \dUW of pr(i), i =
1.2.3,.... This means that mc get t,lw following CR to com-

pute the first tcrui in (G):

@(i = 0,l) = (1, *: E(Q)}. (0)

Applying E t,o rk will consecpen~l~ wnqmt,c: values of
u!: (2,(y)!: : (k,(j)! performing 1’ iKldltlOnS and 1 niultiplica-
tion at. (~i~(~h step. After k shifb Value(E”(@)) gives the
value of d(k, f:) in (6).

bvt2 can nialw sc:hc:nic~ (9) even nlore effcdivc involving
lJiIli1ry powring ido the coIllpU~atioIlal procc:ss. It. follows
front definitions of Value; E ant1 front basic properties of
pure-sum CR.5 [l l] t,llat.

(10)

for any wnstxnt (:’ ;Intl il. pure-sum CR. G. Also for CR in (7)
the following equa1it.y holds

(0: +, 0. +. u!}(i = 0; 1) = ,r:!{O, +; O! +: l)(i = 0: 1).

Start,ing wit.11 the CR {(J. +: 0: +: 0: +: 1}(1: = 0: 1) instead
of (0, +: 0: +? 0: +: l!!}(1: = 0. I) w: got. aft,er log L! applica-
t,ions of Uz a CR

~(i=O.a)={~F‘o.+,~,~+ ,..., +:$,m}(i=o.l:).

bc used in the S~IIIC ~nnnner iu the gcmral case. For cx-
aniple. if f(i) in (1) is a lml~non~i;~l. aftcbr 0lAaining (5) it
can be useful to couq)u~~c gcd Of COIII~OII~~S Of CR. 9,
g! a.Ild titk(’ Out tile t.erni 9 k in thC 5811W \VilV ilR WC? ll>L\;C
douc it. with (I!!)“. It. will dccrea.se the size o’f colnponents
and t.hc cost of Ault.iplication and addit ions during shifting
CR 111 in (5). \VP did not need to cxmqmte t.his gcd in the
f’RS(! f(i) = i bCX:~l.llSf! lV(! kIl~\~ its vallle (I;!) in iUlVU1CC.
Iii thr exe of rational func~t~iou S(i) ~mrt: coniples analysis
(e.g. cwuputirig of the dispersion Of t.hc nurncra.tor and de-
ll0lllillilt0r) can help to cancel larger coum1ou fact.or which
ivill a.ppcar after unrolling. SoInctiuws t.his co111111o11 fil(:t,Or

can be tlcriverl wit.liout. coniputation of gcd, as in the (‘it%’

of bin0IIlii~lS.

3.2 Binomials

(13)

(we awnne t,hat, tx < N/2). For t.his computation there a.re
several differcmt. first-order recurrences to start with, e.g.

We withdraw t.he t.hird 011e be(:allsc it requires IV - ‘~1 > 11
st,cps to conlput,e t,he result,. First and swond rccurroncw
correspond t,o different orderings of ternis in the nunicrator
ilIld t,hc d~~IloIiliIli~t.Or of (13). 1Ve will st.art 1vit.h the first.
one and apply tlic prowdim dcscribctl in the begiuniilg of
t.liis section ‘I. This procedlm! giws us hhc SC~~CVIIC (5) for
the first tcrui in product (2): where *I = A/r: A aud r arc
both pm:-sum CRs of the lcugth 11. It replaces 1: multipli-
cations ant1 v divisions by 221 addil.ious, 1 rIiiilt.ipliCat.icJIi and
1 division of larger numlwrs. However, as in the case of fat-
torial, it is known in advance that all (:OnlpOnents Of A and
r are divisiblr by li! and t.llis factor C&II be cancelled from
b0t.h numerator and dcnoniinat~or. N0t.e. that it is not nec-
essary to perform a(:l,llal cancellation. For denominator we
ran conipiite 1 he rwilt of canccllat.ion which is equal to the
CR 6 from prwious sul.)scction (it can be done again wit,11
logrs applicat.ions of Liz t.o t.lle CR (0. +. 0, +. , 0: +, 1) of
t.hc lcngt.11 u). Construction of CR. A is rlonc! in ‘1: - 1 st,cps Of
CR mlllt.il)lic:;tt,iorl. After the step number ,j all cornponent~s
Of t,lie int.erniediate result. can I)c tlivitlcd by j + 1. which
by the e11d will produce CR. A with the fa(:t or I:! ~anc~llcd.
Timing for tliffcrcnt. conlputations with different unrolling
factor are given in Table 4.

3.3 Choosing the unrolling factor

In ortlcr to choose the unrolling factor fbr concret,e problem
we must, Carry out. sonw wniplcsit,\: i~na1ySiB. SVC can not rely
on bibconiplcsit y Xl;ll?;SiS only, h~cailw~ as shown earlier,

this will not, giw us I.ruc prediction of iwxlcration. That.
is whv our choice of 1; is heuristic. pilrt.iiLlly tXlS(!d 011 the
follo&g 0bs~rvilt~iOlls about wniplesity.

Consider (6) and (12) and ~SSI~W I = 0 for simplicity.
IIlfOIIlli~ll~ we have the following trade-off:

1) w\‘c do IlOt. want. 1: to IJC wry large:: I)C!C’itllSC! I! is the length
Of CR <> in (12) “.
2) wc do not. want k to be wry large: bccaustr we ha\-(3 to

perform k niultiplic4ons coniput.ing E’ in (12).
More forinally:
1) thv nulnbcr of additions in t.hc scheme (12) is iIl\VayS t.he
s>lnl~~ - 7) = k:lr; tlw sixv of c:onlponents of CR & is hounded
by 22:L(v) (where L(Y)) denotes the nuinher of digits of iw
tcgcr 0 iI COrIx?sp~JIldiIlg number system): t.he cost of all
adtlit~ions is ‘L//(;L(0).
2) the number of I~lul~i~~licatio~ls t.o coq)ut.c E” in (12) is
Ay j-th multiplier is equal to ((j - l)v)‘/t!!: the cost, of id1
miult,il)licat.ioIIs is O(7,‘k log((n + li - 1)/(,11 - I)) if the Karat-
Sllhil illgO~it~llIll is disa.blcd.
3) the time t.0 construct t.hc CR 6 is O(?:” log’ 1:) if ?: is sOrnc
powr Of 2. Or O(,o” log t:) Otherwise.
4) there is yet. 1 mow binary powering to compute (c!)’ a.nd
1 final rlililt,iI)lication.
All this giws a non-linear equation t.o be solved for estima-
tion the va.lue of U. Enabling the I<;watsul)a algorithm makes
the analysis niorc coniplicated. Also. nienior?; nianagcnwnt
has t,o 1~: t,akcn into account. Empirical results suggrsf that
good choice for ‘t: be some power of 2 claw to @.

4 An analog to binary powering

Earlier w-e saw 1~llilt binary powering was appearing in t.hcb
factor ‘1; CR unrolling sc:lienie to compiitc factorial. In this
section wc firit1 a more direct iUl&g t.0 l)iriar,v powering.

5Vc: 1vrit.c 71 = k 2”’ + 1. 1 5 I < 2’“. .Assuniing that k! is
ccnnlmt~cd WV ~:a11 use t,he following recurrcn(‘(~ for (h-2”‘)!

(,k. 2’)! = ((Ii. 2’--‘)!)”
(, >

y1 : ; = 1.2,...:u:. (14)

This is an ~~n~~l~~~ to binary powering. Xt, ~~11 st,Cp scpar-
ing and some extra work is Iwing perfornled. This extra
work hew is of course more cspensive than that. in t.hc case
ol’ powering, but. the squaring operation tlOIlliIliLt(~S. For
t.lic sccontl terni in (1:I) VW construct, a CR of t.he form
+(j = 0,l) = {(y).*?+). S:<‘glt.f tl w 1 or\vard use of this CR

will doublc~ the number of st.eps in j bct.wcn ($!!]) and

(“~,~~‘). But. WC (:a11 apply the t,raIlsformilt,ioIl Vz after ev-
cry k steps in j. Thcrc arc also several technical observations
licw influencing the 4fwl;ivcncss of t.he act.ual c:oIIil)iitatioIis.
Thr simplification of t.he basic rcwuxncc for (T;)

is usefiil. If wv additionally use fiKt.Or v unrolling of t.liis
recurrence we rcbduw the size of the nunwrator a.nd dc~~o~n-
iiiat.or (due to CilIlWlli~t.iOIl l)V ,u!) and its in the cast: Of bi-
nomials we save v - 1 nlult,ipiitratiOris illld ‘1: - 1 tiivisi0Ils id

ea.ch step. Also thcrc is factor 2 ““‘1 which can be t,akcn out
from nunwr;itor of the CR. (in syst.t*nls with IJil.se equal to
power of 2 it will b(: c%caper to perform one llardwilr(: shift,

80

, fi‘lOO!
RX1
lit‘ 16
II 1: ‘3’2
UF ;;.I
CF 128
1 SOO!
RM
IIF 3’
UF 6.4
1!Y I28
UF 256
32000!
R.M
UE’ 32
1IF 64
UF 128
III;’ 256

ll.I)R
2.06 0.03 1.88 + 0.15 + 5.37
1.81 0.19+1.4ti+O.l6 6.1 1
2.58 I.32 + 1.N .-t 0.19 4:29

l&6!) 12.62 + 1.88 + 0.19 0.75

R4.(l7
6.5.5 0.17 t 5.78 + 0.6 8.39
5.58 1.2 + 3.73 + 0.65 9.85
17.81 11.96 + 5.14 + 0.71 3.09

IlO.. 106.7:< + ‘Z.83 + 0.75 0.49

.I 15.35
3!i.0.; 0.2 f 35.94 + 2.9 10.64
28.01 1 .l + 23.84 .t 3.07 l.i.83
37.2 II.95 + 21.8,: -t :1.:3!3 11.17

126.13 109.6.5 + 1’2.81 f 3.67 3.29

2.53
0.66 0.0 + 0.65 + 0.11 3.83
0.5.5 0.0 + 0.44 + 0.11 4.6
0.4 4 0.0 4 0.33 + 0.11 5.75

0.5.~ 0.27 + 0.17 + 0.11 4.6

9.61
2.54 0.0 + '3.20 i- 0.38 3.7'2

1.98 O.O+ 1.65 T 0.33 .I.85

1 .fj5 0.24 + 0.99 + 0.38 5.82

2.75 I .i + 0.61 -I- 0.41 3.-l!)

6 5 -1 2
19.x3 0.0 + lR.29 + 1 .64 3.28
14.83 0.06 -1 13.0:! + I .iR 4.41
JO.49 0:?2 + ii.41 + 1 .86 6.33

8.90 1.65 + 5.27 + I .98 i.35

8.W
1.61 5.53
1.56 3.71
2.18 .l.OS
6.95 1.28

40.3.i
6.24 ti.46

ti.64 6.08
11.05 3.65
43.6’ 0.92

301 ..I1
47.04 6.4 I
43.87 fi.87
48.00 6.28
78.74 .3.Y3

at, the end). Table 5 gives timing for different values of /I. in
Maple, C++(NTL) and -Java.

Map10] NTI, 1 JaX%
1’3R001
Rhl X3.38 9.66 ‘IO.?6
BAF 4.:w(:~.l9) 0.88 (0.44) 5.21 (1.21)
speedup 12.19 10.9s 7.8’2
25600!

5 Implementation

All algorithms dcscribcd in this paper were implen~entcd in
Maple? C++ and Java. The Maple iniplcrllent,atioII extends
the Maple CR pac:ka.ge [G]. Part,s of the ront.ines were opt,i-
mixed for arbitrary precision arit,hInetic, which rctluced COII-

struction tinw sigllific:inltl~.
Our C++ illlylcIileIltatioli was built. OII top of NTL li-

brary becnusc of KTL’s pomcr and flexibility. The NTL li-
brary allows cont,rol over nlemory allocation and supports
optional nse of thcl Karatsuba. algorithnl. The irnplcmcnta-
t.ion enCaIJs&tcS a CR. engine. which was specifically de-
signed for this purposcz and provides the user with a set of
&SSOS and rout.incbs to con1put.e products, including fact,ori-
As, binomial coefficient.s, etc. The impleIncnt,;~tioII is a C++
library. which cm hc linked to any applica.tion 011 th variety
of platfornls support,ed by KTL.

.Java BigIntegcr nwnbcrs were chosen for our cxpcriments
mostly because of Java’s popularity. Norcover, t.hc perfor-
rnance c0nstraint.s of Java Virtual Sla(:hint:s nwke it impor-
tant to accelerate time-consumiIlg opwations. The .Ja.va im-

plenwntation is siruilar to the c’++ iniplementation. It is a
I>a<:kage: containing classes for basic CR. tools RII~ a-rapping
clasws for product,s-computiIlg routines. This package can
be easily included int,o any Java project.

6 Concluding remarks

Wc presented in this paper an approach to accelerating the
comput,ation of rl-ary products for large 12. over arbit.rary
precision integers. The main t.ool was a combination of CR
techniques, loop unrolling and binary powering. Ret.urn to
Table 1 a11d compare the tinlings for new i~ol’lclllc~nti~tions
(Table 6) of tasks T2, T3 with the previous.

T2 T3
Xaple 7.75 (140.07) 523.17 (6153.48)
KTL 1.98 (24.39) 124.62 (488.52)
.Ja\ra 14.11 (109.41) 299.72 (3m.73)

Table 6: Final time in sc~011rls for T2 a.nd T3 in 3 systenls;
tirnc before iInprovcrnc:nt is given in brackets; all Maple tinl-
ings are based on interpreted (library) code.

The t,cchnique proposed here is easy t.0 combine with
other fast, nlethods to co~nputc pr0tluct.s. For exanqlc, OIIC
can find in [S] it fast. formula to conipute factorial, which is
based on binary splitting algorithm cornbincd with a redur-
tion of the even factors int.0 odd factors and mliltiplic.atioIi
by iI ~JoWer of 2. Aipplication of t,he CR,-based unrolling
technique t.o t,he innermost. product in this fornlula is crr~v
to irnplcnicnt. Our prclirninilr~ c~xperiments Show a 2 LO 3
tinles acwleration after such il c:onibinat.ion, although the
resulting sclienlc is still slower tha.n (11).

A factor v unrolling of a CR. for f(i): i = 0, 1: . cor-
responds to t.he subst,itut,ion d = pi into the closed fornl
expression for f. Thcrc arc t\vo possibilities:
a) (nwneric) to c:onstr~~:t t.he CR, for f(i); i = 0; 1: after
substit,ntion; 1~) (:, 7 \,\ mbolic) t.o construct. a CR. for f(i): i =
0, h. 2h,, . s~n~boli<Al~ and when the value of v is dccidcrl
- t.o substitute 11 = II ;I, this CR.. This will require nunier-
ical cornput;~tions after t.hc substitutions whose wmplexit~y

81

s-r
l!F 25
IX .50
UF 100
1;F 200

m
ST
I;F 25
UY 50
UE’ 100
l;F ‘200

m

ST
Ll-. 2s
UF SO
1iP IOU
UF 200

F

UF 28
UF 50
UF 100
UF 200

15.12
3.s7 (0.11) ,1.23 *
3.41 (0.73) 4.44
-1.62 (2.12) 3.27

21 .F (19.9.1) 0.7

3 5 .2 6
8.52 (0.12) 4.14
7.55 (0.74) .I.67
8.56 (‘2:25) 4.12

26.35(50.72) 1.34

200.04
39.46(0.12) 3.07
34.49(0.753 5.80
32.63(2.54) 6.13

53.32(23.14) 3.?5

4167.87
65.4.3 (0.14) 6.37

570.16 (0.77) 7.31
4!bJ.41 (2.M) 8.43
.~02.9(i(24.07) 8.29

3.00
1.16 (0) 2..S9

0.99 (0.02) 3.0:3
0.94 (0.18) 3.J.9
2.2 (1.M) I .3F

4.64
1.91 (0.01) 2.13
1.57 (0.02) 2.96
1.37 (0.181 3.39
2.55 iI.58j 1.x:!

19.11
8.15 (0) 2.3‘1

6.67 (0.02) 2.87
5.42 (0.19) 3.53
5.8 (1.63) 3.29

311.05
119.28 (0) 2.08

1’0.4(0.02) 2.68
95.43(0.191 3.26
78.9611.63j 3.94

10.46
2.17 (0.09) 4.82
2.27 (O.t%) 4.6
3.96 (3.75) 2.64

24. I .5 (23.95) 0.43

25.71
4.88 (0.10) 5.27
4.83 (0.71) 5.32
7.75 (3.80) 3.72 *

‘28.6’2 (24.28) O.!lO

112.16
18.73 (0.11) 5.!)9
16.09 (0.71) 6.97
J 7.90 (3.84) 6.27

38.77 (24.33) 2.89

2089.42
288.4i (0. I 1) 7.24
234.31 (0.77) 8.92
205.iO (4.01) 10.16

‘212.N (25.26) 9.8.5

is not better t.han the cornplcsity of case a). In this pa-
per WC dcscrilxd an alternative numeric approach \vhich is
quit,e suitable for computation of factorials or binomials. In
the general cast (1) (when f(‘) (IS not known in advance)
s?lnibolic-numeric mixture of a) and 1~) can help, allolving
symbolic simplifications.

It would hc also int,eresting to carrg out the series of cx-
perinlents on a. parallel archit,ect.ure (especially SIkID type).
The reason for this is that basic qperat.ions 011 CRs (E(G):
CT?, (‘P) etc.) arc highly parallelizable and methods from [9]
reduce t.he shill. of a bR. to t\vo parallel opcrat,ions only, e.g.
one parallel shift and one parallel addition. This xvi11 change
the heuristics for u and 11;. The choice of 21 and u: will also bc
different if we apply this technique to t,hc computations mod-
ulo a large na.tural number (not necessarily prime). It u-ill
IIIOVC us closer to fixed point arithmetic. We alsO think t,hat
irnprovcrncnts t.0 our technique Inay be possible if a modu-
lar iniplcnicntation of arbitrary precision integer arit.hmctic
is used. Also y-adic representation of numbers can bring new
possibilit,it:s for furt,hcr progress.

Acknowledgments

The authors would like to thank Chris Howlett (Web Pearls
Inc.) for his help during preparation of this paper. The
third author is grateful to Bruno Salvy (INR.IA: France) for
pointing out the reference [j] and for useful remarks to the
first draft, and also t.o Ha Quang Le (Universit.y of Waterloo)
for many discussions during the work on the paper.

References

[l] BISJ D.: PAX V. Polynomiclb and Matrix Computations.
Fundamental Algorithms, vol. 1. Birkhauser, 1994.

[2] B~HWEIN .I., BOIWEIS I’. Pi nrLd the AGM. Wiley,
1987.

[3] CHAR B.W., GEDDES K.O., GONNET G.H.,
LEONG B.L.? MONAGAN M.B., WATT S.I\;I. Maple-V.
Language Reference Manual. Springer-Verlag. 1991.

[4] COHEN H. A Cowse in Computational Algebraic Num.-
her Theory. Springer-Vcrlag, 1995.

[5] HAIHIX B.: P.WANII~OIAOII T. Fast multiprecision
evaluation of series of rational numbers. Technical re-
port TI-97/7. Tech. rep., University of Darmstadt,
1997.

[G] KISLESKOV V.? MITROFASOV V.? ZI~IA E. Xlultidi-
nlensional Chains of R.ecurrcnces. In Proc. of ISSAC’98,
Restock, Gelmuny, ACM Press (1998), pp. 199.-206

[i] IiXC!TH D.E. The art of computer program.ming. V.2.
Seminumericul Algorith,ms. Third edition,. Addison-
Wesley, 1997.

[8] SHOI:P V. http: //wuw. cs . wise .edu/“shoup/ntl/.

[9] ZIMA E. Recurrent relations technique to vcctoriae
function evaluation in loops. In PARCELLA ‘94, Pots-
dam, Germany (1994), pp. lGl--168.

[lo] ZIMA E.V. Automatic construction of syst,cms of recur-
rence relations. USSR Comput. Maths. Math. Phys., N
6 24 (19&l), 193-197.

[ll] ZIMA E.V. Simplification and Optimizat.ion Trans-
formations of Chains of Recurrences. In Proc. of IS-
SAC’95, Montreal. Canada, ACM Press (1995), pp. 42-
50.

[12] ZIMA E.\‘. Safe numerical computations Jvith chains of
recurrences. Programmirocranie N 9 (1997); 3G--42.

82

