How Fast Can We Compute Products?

V. Kislenkov
Dept. of Comp. Math. &
Cybernetics, MSU
Moscow 119899 Russia
kvv@cs.msu.su

Abstract

In this paper we consider the problem of fast computation
of n-ary products, for large n, over arbitrary precision inte-
ger or rational number domains. The combination of loop
unrolling, chains of recurrences techniques and analogs of bi-
nary powering allows us to obtain order-of-magnitude speed
improvements for such computations. Three different imple-
mentations of the technique (in Maple, C++ and Java) are
described. Many examples together with timings are given.

1 Introduction

An arbitrary precision arithmetic is undoubtedly the “work
horse” of general purpose computer algebra systems and nu-
merous specialized packages. Advanced algorithms to per-
form basic operations on arbitrary precision integers are very
well known. Many books [1, 4, 7] give overviews of those
algorithms together with detailed implementation remarks.
Most computer algebra systems (such as Maple [3]) and spe-
cialized number theory packages (such as NTL [8]) contain
implementations of these algorithms. For example for mul-
tiplication they typically use the Karatsuba [7] algorithm.
Even some general-purpose programuning languages have ar-
bitrary precision arithmetic. As examples, Java has Bigln-
teger as a core API class in the language, and C may be
extended with the GNU Project’s ginp library.

Section 4.3.3 in [7] is entitled “How fast can we multi-
ply?” In this paper we would like to address a related prob-
lem and try to answer the question “how fast we can com-
pute n-ary products for large n?” By “compute” we mean
obtaining the exact integer or rational result. By “product”
we mean:

Fny=a1-a2-...-ax =Ha,—, (1)
i=1

where a; € Z or (). We are interested in cases when a; and
n arc large numbers. We also assume that a; = f(¢), i.e. can
be written as closed form expression in <.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. ISSAC '99,
Vancouver. British Columbia, Canada. © 1999 ACM 1-58113-073-2
/99 /07 %5.00

V. Mitrofanov
Dept. of Comp. Math. &
Cybernetics, MSU
Moscow 119899 Russia
mitrofan@cs.msu.su

E. Zima
Symbolic Computation Group
University of Waterloo
Waterloo, Canada
ezima@daisy.uwaterloo.ca

Computational problems like (1) are not rare in practice.
Such problems arise for example in the evaluation of series
of rational numbers [2, 5]. A typical approach to the com-
putation of (1) is binary splitting, which does not reduce
operational complexity. The binary splitting algorithm is
asymptotically faster then repeated multiplication only if
multiplication of n-digits integers is asymptotically faster
than O(n?). In this paper we will show how it is possible
to reduce both operational and bit-complexity of (1). Our
main effort will be to reduce the number of multiplications
and to replace as much of the remaining multiplications as
possible by multiplications of smaller in size numbers.

Many familiar computational problems can be written in
form (1). For example,

a) a; = ¢ (constant): F(n)=c",
b) a; =i F(n) = n,

¢) ai = (c+i—1): F(n) = (c)” (rising factorial power),
d) a; = =4 F(-n)=(f':), '
and so on.

Case a) has received a lot of attention and one has very
cfficient solutions - variations of binary powering algorithms
[4, 7]. In current software, cases b) through d) are imple-
mented by iterated multiplication. Such naive implementa-
tions are slow, relative to what has been achieved for case a).

Consider three very simple computational tasks

T1. Compute 7789700
T2. Cowmpute 20000
T3. Compute (f;gggg)
For these tasks the number of decimal digits in the answer
is between 75000 and 78000. Table 1 coutains timings * for
these 3 tasks obtained on P-200 with 64 Mb of RAM, in
Maple, C++(NTL) and Java.

T1 T2 T3
Maple | 1.40 (2.27) | 70.99 (140.07) | 6153.48
NTL 0.74 24.39 488.52
Java 7.71 109.41 3461.73

Table 1: Time in seconds for 3 computational tasks in 3
systems.

Times for T2 and T3 are much worse than times for T1.
It is not surprising since binary powering is used for T1. We

!Factorial and powering are implemented in the kernel of Maple
(compiled), and binomial is implemented in the library (interpreted).
The parenthesized times are the times for an interpreted factorial and
powering.

will describe some approaches to the improvement of times
for T2, T3 and more general tasks of the form (1) in this
paper.

There are several different techniques which help to ac-
celerate computations of products. Some of them are system
dependent, some of them are general. We are particularly
interested in general techniques. That is why we choose
three very different arbitrary precision integer arithmetics
for practical illustrations. Here are interesting features of
these arithmetics.

Maple (Maple V Release 5): the base for integer arith-
metic is some power of 10 (depending on platform); our im-
plementation is library level Maple code. We have essentially
no control over the internal representation of integers and no
control at all over memory allocations and reallocations.

NTL (NTL 3.02): the base for integer arithmetic is some
power of 2 (depending on platform); our implementation is
C++ code; we have control over the internal representation,
merory allocations and also over algorithms (for example
we can force Karatsuba algorithm for multiplication to be
enabled/disabled).

Java (JDK 1.1.7): the internal representation and imple-
mentation of the basic arithmetic over BigIntegers are inac-
cessible; we have no control over the internal representation
and very limited information about algorithms used.

We will show in this paper that some improvements can
be obtained for all of these systems due to our general ap-
proach to the acceleration of computation of products. How-
ever, better results in absolute timings (see Tables 3-5) are
obtained with NTL where we can combine the general ap-
proach with several technical improvements, taking advan-
tage of knowledge gained from NTL sources and using special
features of concrete problems.

For our purpose we will combine several different tech-
niques, well known in the theory and practice of optimized
compiling and fast computations: binary powering, loop un-
rolling, chains of recurrences, etc. The chains of recurrences
technique is proven to give good results in accelerating iter-
ative computations over regular intervals. One of the objec-
tives of this paper is to show how this technique can be used
to accelerate onc-point evaluation of a function, especially
in cases when this evaluation is computationally intensive.

The rest of the paper is organized as follows. In Sec-
tion 2 we recall some necessary optimizing techniques and
give a brief discussion of bit-complexity. In Scction 3 we
present combinations of loop unrolling and chains of recur-
rences techniques to accelerate problem (1). In Section 4
we give an analog of binary powering for computation of
factorials. Section 5 describes implementations of our algo-
rithms. Section 6 contains concluding discussions and plans
for future works.

2 Preliminaries

2.1 Loop unrolling

Loop unrolling is an optimization transformation widely
used in optimizing compilers. It replicates the body of a
loop some number of times called the unrolling factor (v)
and itcrates by step v instead of step 1. Unrolling can im-
prove the performance becaunse

e it reduces loop overhead v times;
e other optimizations become possible (e.g. it may be

possible to find common subexpressions in replicated
instances of the loop body).

Since all computational tasks considered in this paper can
be rewritten as loops, we will use a technique similar to
unrolling as one of our tools.

Remark 1. We can say in advance that in the casc of ar-
bitrary precision integer computations, loop unrolling alonc
can not help materially. Loop unrolling must be combined
with other techniques in order to obtain significant speed
improvements.

Consider an integer v > 1 and rewrite n in (1) as n =
k-v+1(0<1<uv) Interms of (1) loop uurolling can be
expressed as

k u i

F(n) = H H("(i—l)v-i—j 'H’-Lkvﬂ'

i=1 j=1

()

Ifai =ci=1,...,n and I = 0 (for simplicity) then the
computation of F(n) = ¢ can be written as
-— v e B . —]\I
b= H.].:l ¢, F(n):= Hi:l b.
Remark 2. We write the scheme in terms of products
as above, giving risc to the following program:

b:=1; for j:=1 to v do b:=
f:=1; for i:=1 to k do f:=

b * ¢ od;
f * b od;

This program was obtained by the application of loop un-
rolling (factor ») to the loop computing ¢**) by repeated
multiplications, and by application of substitutions and code
motion to the result of unrolling.

Of course, the program above can not compete with bi-
nary powering, but we will use it as a basc-line model in
our discussions. Observe that repeated multiplication takes
kv multiplications while the unrolled program takes k + v
multiplications. In the case of a fixed point computation if
k and v arc chosen so that k & v = y/m, the unrolling gives
v

2

speed improvement.

Remark 3. Repeated multiplication is rarely used in
practice, but we time it to provide a bascline for compar-
isons. In computation of products (1) we will compare re-
peated multiplication, unrolling and binary-like methods.

2.2 Chains of recurrences

Chains of recurrences (CR) is a technique to accelerate it-
erative computations. This technique has proven to be of
practical use in cases when evaluation of a closed form ex-
pression has to be performed over regular intervals [6, 10, 11].
Here we will show that this technique can be useful when we
need to compute a single value. In this paper we will use
only simple chains of recurrences and simple CR-expressions.
We recall briefly necessarv definitions and facts and describe
useful transformations of CRs.

2.2.1 Definitions.

Given constants @o,...,pr—1, a function fi defined over
NuU{0}, and operators 31,...,= equal to either + or *,
we define a Chain of Recurrences (CR) as the set of func-
tions fo, fi,.... fe—1, fr such that for 0 < j <k

R L if'iZO,
L@ = { Do fiui-1, ifi>o O
Further, to denote CRs (3), we will use the shorthand
foli) = ®(i) = {0, @1, 1, Cay @2, - .. Ok, fr } (@) (4)

For example,

f()—z—{() +, 1}(2),

FG) =4 +2i ={0,+,2,+,6,+.6}(3)

f@) =i ={1,%1,+, 1} i), etc.

Recall that in (4) k is called the length of CR ®; & is simple
if fr(7) = @k is constant expression; ® is a pure-sum CR, if
= =+

d, = {gp,.;(f-,‘;,.+1,<f:’r+1,. . @A-,fk}, (0 € r € k) is called
r-order subchain of the CR &®. Expressions with CRs as
operands are called CR-expressions.

Here we will deal primarily with simple CRs and CRs
whose first order subchain is an expression involving simnple
CRs, for example
(7) ={1.%, %} which gives the well known recurrence
('1‘) = (7.1—11) % in CR notation.

All CRs above assume that ¢ starts at 0 and steps by
1. However we will use CRs with variable starting and step
values. Accordingly we extend the CR notation as follows

G, fi}(i = o, h).

For example, i! = {1,%,1,4+.1}(¢ = 0,1), at the same time

TV — e —
=L =...

®(i =0, h) = {0, 1,01, G2, @2

' = {1,% 2, +,10,+,8}i = 0,2), or
ny _ {n.+,-1}, .
(i) = Ty =01

at the same time

n {77.2 -n,+,—4n+6,+, 8} .
= {1 . =Y, °
(,) L PN Ty m AUl

2.2.2 Value and shift of a CR.

Interpretation of CRs is based on function Value and

shift operator F which are defined as follows. Given
CR-expression @,
Value(®) =

c if ® is a constant expression ¢
{ Y0, ifd?—{\,»l) i, Y1, "/I.’fk}

F(Value(®,),..., Value(,,,)) if ®=F(®1,...,%,),
E(®) =

c, if ® is a constant expression ¢

{wo @11, 01,01 @292, ..., e O Value(fi), O, E(fi)}
1f<1>—{(,:’r) L@l Ok i}
F(E(®1),..., E(®x)),if <I> = F(®y,...,Pn)

Fun(,t.lon Value(<I>) returns the current value associated
with a CR-expression, E(®) returns a CR-expression up-
dated for the next value of i.

It is useful to have specialized definitions of Value and
E for simmple CRs and CRs with simple CR-expressions as
subchains:

Value({yo, @1, ®1}) = o,
E({p0,%1,®1}) = {yo @1 Value(P;)

o1, E($1)},
E({v0,®1, P T2y p2, ... Ok, Pr}) =

= {apo @11, E1, 01 Oape, (V’zi---,w\—l Ok Pk, 31\7991:}7
e Ay . alue(a) @ E A)
E({'yo,-\:,/l, F}) == {&,v(l ©n __Value(r) i1, E((I‘) }

2.2.3 Fast method to change the step of a CR.

Assume we are given a simple pure-sum CR

®(@=0,1) = {po, +. 01, + 2. .., + e }(i = 0,1)

which corresponds to a polynomial P(2) of degree k in i with
the table of finite differences g, w1, w2, ..., vx. How can we
find the CR

V(i =0,v) = {¢o, +, 1.+, ¥, ..., +, Y Hi = 0,v)

without reconstructing it from scratch?

We call the corresponding transformation a factor v CR
unrolling and denote it U, : ®(= 0,1) — ¥(i = 0,v).
Let I : & — & be identity transformation. Write & as

= {0, +,P1 }{i = 0,1) where &, is the first order sub-
chain of . After v steps of computations with this CR we
have
®(i = v,1) = {@o + Value(®,) + Value(E(P;1)) +...

..+ Value(E'"'(®))), +, E* (1)}
From here
Y1 = Value(®(i = v,1)) — Value(®(i = 0,1)) =
= Value(®,) + Value(E(_<I7|)) +...+ Value(E'
= Value((] + E + E* +... 1 E"~1)(@1))-
Now consider &, = {pl +, &5} where &, is first order sub-
chain of (I+E+E*+..:+ Ev (@) and perform the same
transformation:)
Value((J + E + E* + ... + E*7')(®2)) gives ¢»,. Continue
the same procedure for 3d, 4th, ... order subchains we get
the following general formula:

(1)) =

& =Value(I+E+E*+.. .+ E"" 1Y (®;)), 5 =0,1,...,k,

where ®; is j-order subchain of ®. Note, that these trans-
formations work exactly the same when starting value for ¢
differs from 0.

We are particularly interested in transformation Us

which doubles the step of a pure-sumn CR:

Us: ®(1=0,1) > ¥(i =0,2), where U(1 =0,2) =

= {go.+,Value((I + E)®,), +, Value((] + E)®;), +,
.y +,Value((I + E)*®;)}.

Computationally all this is much simpler than it looks at
first glance, because application of (I + E) to &, applies the
same operator to all subchains &, ®3,..., ®,. That means
that an analog to the Horner scheme is possible. Let us write
the algorithm to perform transformation Us:

Input: o, ¢1,92,...,9%k.
Output: o, 9, ¥, ..., Y.

for i:=0 to k do ¥: := ; od;
for i:=1 to k do

{ apply (I+E) to subchain ¥; }
for j:=1i to k-1 do
¥ioi= 22Uy 4+
od;
e 1= 24y
od;
This multiplication-free ? algorithm gives us the possi-
bility of doubling the step of a purc-sum CR. very fast. It
will be used as one of the main tools for fast computation of
products. Consider an example: given
i~ 24+1=234=0,1) = {1,+,—1,+,6,+,6}(= 0,1),
the following intermediate CRs appear during computation
of U2 (®):
{1,+.,4,+,18,+,12} —
{1, 4.4, +.48, 4,48} = Ua(®).

{1,+,4, +,48, +, 24} —

2Multiplication by 2 can be performed by hardware shift in NTL,
or can be written as the addition in Maple.

A transformation U, does not change the length of a
pure-sum CR, and can be performed using additions only.
It is somewhat more expensive in the case of CRs of the
form ® = {pg,*,P1} and & = {pq.* %} where ®1, A and
I arc pure-sum CRs. In the first case we have

V(i =0,v) =U.({po,*, @1} =0,1)) =
{po.*, U1}(i =0, '1) =

{20, %, Un(®1) - Us(E(®1)) - ... U(E"~1(®1))}(i = 0,v).

Here ¥, is a pure-sum CR. obtained as the result of multipli-
cation of v CRs U,.(E7(®,)), j =0,...,v—1 and is v times
longer that CR for ®,. In the second case we have

W(i = 0,v) = U,({o, *, 2Yi=0,1)) =

{o. % 2}i=0,v) =
{.,\ Uy (AY U (E(A))-...r
FO: 5 T T (BT

U (B " YAy — s

U Ev—1(T)) }(1 - 07 l’)'

Here again the numerator and the denominator of ¥, are

pure-sum chains » times longer than A and T respectively.
E\eunplP Let (7 = 0,1) = {1,*.1,+,1} which defines

1D} ={1,* {1.+,2}
{1*2+10+8}(1—
. (or, what is the same,

U_ <I>) = {1, *, U_w({1,+, 1H-U=(42,
{2,+,2}}={1,*,{2,+,1(}}
0, 2), which defines ¢! for i = 0; T
2i) fori=0,1,2,...).

+

.

2.3 Bit-complexity vs operational complexity.

In this subsection we show that theoretical estimates of com-
plexity and practical timnings may differ. In other words bit-
complexity is not the only issue to worry about when we try
to accelerate computations of products.

Let us start with simple observations. Consider the com-
putation of ¢ where n = 2%, and let L(a) denote the bit
length of an arbitrary precision integer a. Assume that it
costs L(a)L(b) bit operations to compute the product ab
(no advanced multiplication algorithm is in use), and that
L{ab) = L(a) + L(b) (which is often the case and simplifies
further estimates). Compare the complexity C.(n) of re-
peated multiplication (2* — 1 multiplications) and the com-
plexity Ci(n) of binary powering (k squaring):

C.(n) =L{c)* +2L(c)* + ...+ (2" = 1)L(e)* =

L) S0 i = L) (2~ 42
Cy(n) = L(c)? + 4L(c)2 +. (22"‘2)L(c)2 =

2 A—l
L(c) =0 27 = L((') (— é) ;
Cr (ll) j.l“" ,k—'l
Crn = 3T R 5

This slmplo estimate coincides with a possmmtlc statement
about binary powering found in [7]: *If we wish to calcu-
late the exact multiple-precision value of ", when =z is an
integer greater than the computer word size, binary meth-
ods are not much help unless n is so huge that the high-
speced multiplication routines of Section 4.3.3 are involved;
and such applications are rare.” Qur experiments (see Ta-
ble 2) show that even when multiplication is naive and
is an integer greater than the computer word size, binary
powering is more than 2 times faster than repeated multi-
plication. This has a simple explanation: the operational
complexity of binary powering is much smaller than that
of repeated multiplication. There is a consequent reduc-
tion of related complexity factors, such as loop organization
or memory management overheads. When « is an integer
smaller than the computer word size, binary powering is

much faster. When high-speed multiplication is available,
binary powering is vastly superior.

For an unrolling powering, the situation remains the
same. Return to the program in section 2.1 and estimate
the complexity Cr of repeated multiplication versus the com-
plexity €, of unrolling powering with the same assumptions
about L as above and n = ku:

Cr(n) = L(¢)” +2L(e)* + ...

L (’)2 Zk"_l'i = L(c)) (l k20® — %k'u) ;

Cu(n) L(()z + 2L(() +..o 4 (v —1)L(e)*+
+L(b + 2L(bY* + ...+ (L. —1)L(b)* =

L(e)* Y i+ L(b)? Zf‘:f i=
(.(Lklng lnt() account that L(b) = L{c") = nL(c))
= L(c)*L (ku—l,l-+c—1,)
(()
Cy(n) =
This analysis sugg.,ests rhat speedup because of unrolling is

less than 1 + ﬁ. in the best case, when k and v are taken

+ (kv — 1)L(e)* =

approximately equal to each other. Experiments in Maple,
NTL and Java (Table 2) show that this is not the case.

Maple Maple NTL NTL Java
5.3 (no K) 5.5 (no K)
Cfsoo
RM (time) 10.0 9.26 1.76 1.64 6.70
BP 10.3 35.2 6.3 14.9 9.2
UF 30 5.9 6.8 3.0 3.0 5.8
UF 60 6.5 8.9 3.1 1.0 6.4
UF 90 6.7 11.0 3.0 4.5 6.8
9000
li\l (time) 40.0 37.65 7.09 7.08 24.44
BP 9.1 52.8 6.8 32.1 8.9
UF 30 5.9 6.7 2.6 2.6 5.2
Ur 60 6.5 9.1 2.5 3.4 5.7
UTF 90 6.9 11.2 2.7 4.0 5.9
UL 120 7.1 11.9 2.6 1.6 6.0
3500
RM (time) 193.0 164.78 53.66 53.06 108.69
BP 2.4 27.1 3.2 2R8.37 2.5
UF 30 1.7 4.3 1.1 2.5 1.7
UF 60 1.8 5.8 1.1 3.3 1.7
UF 90 1.8 7.2 1.1 3.9 1.8
Ry
RM (time) 809.0 681.34 220.03 220.10 177.68
BP 2.7 34.8 3.3 38.9 2.6
UF 30 1.5 4.5 1.1 2.5 1.7
UF 60 1.5 6.0 1.1 3.4 L.8
UF 90 1.6 7.4 1.1 4.0 1.8
UF 120 1.6 7.9 1.1 4.5 1.8
Table 2: Time for repeated multiplication powering and speedups

given by bmaryggo“ermg and nmollod powering in 3 systems (time
insec.); ¢ = 2l Dep = 212 UT stands for unrolling factor.
RM stands lor repeated mulhphcatlou, no K means the Karatsuba
algorithm is disabled (Maple 5.3 is the last release of Maple which
does not use the Karatsuba algorithm for integer multiplication).

The speed improvement for unrolling is not as impressive
as that for the binary powering, but it is much better than
theoretical estimates indicate. The improvement depends on
the size of the base and the system. It is also much better
when the Karatsuba algorithm is enabled, because unrolling
gives more opportunities for this algorithm to be applied.
We can conclude from this discussion that for our purposes
the main emphasis must be (a) trading multiplications for
additions and (b) reducing the size of multiplicands. The
cost of the addition of arbitrary precision integers is almost
negligible in comparison with the cost of multiplication when
the length of the numbers grows.

3 Unrolling and CRs

In this section we describe a combination of unrolling and
CR-techniques to accelerate computations of products. The
general approach is simple. Given (1) and n let a; = f(4)
be polynomial or rational function in i. We can reformulate
(1) in terms of CR

B(i=1,1) = {1,% & }(i=1,1),

where @, is a pure-sum CR. of the length [for f(i) if f(¥)
is a polynomial of degree I, or a CR-expression of the form
A/Tf f(i) is a rational function (here A of the length [y is
a pure-sum CR for the numerator of f(i) and T of the length
I» is a purc-sum CR for the denominator of f(i)).
Now let n = kv. Apply U, to ® and obtain the CR
T(i=1,v)={1,* T }(i = 1,0). (5)
Computation of Value(E*(¥)) gives the value F(n). Each
application of F to ¥ costs 1 multiplication and lv additions
if f(4) is a polynomial of degree I, or 1 multiplication, 1
division and »{l; +12) additious if f(Z) is a rational function
with a numerator of degree 1 and a denominator of degree
ly.

This approach relies on the proper choice of v, which in
the general case is not obvious. Cousideration of concrete
problem opens more opportunitics for improvements.

Further in this section we assume that v will be equal to
some power of 2. The difference with an arbitrary « is in
the complexity of factor + unrolling. If v is some power of
2 the unrolling can be done by consequent application of U,
in O(* l()%.’; v) additions, while in the case of arbitrary v it
takes O(v”) additions.

3.1 Factorial

Given a large integer n, compute F(n) = n!. Rewrite the
product definition of »! using the unrolling equation (2):

n k w
roy = [Ti=T] [T -ve -+

i=1 i=1 \j=!

l

-H(k'u + 4)-

1=1
)

(6)

-~
denote this term Ak, v)

We are concerned about the first term 4(k, ¢) in this prod-
uct since I < ¢. The innermost product in j defines ¢-degree
polynomial in ¢

po(i) = (i — Do+ 1)((E—-1)v+2)...((i— v +v)

which has to be computed for ¢ = 1,2,...,k Now it is not
surprising that the CR-technique can help here, providing
cach value of this polynomial for the price of v additions.
The question is - how to construct a CR. for p, (i) reason-
ably fast? The general CR-construction procedure requires
O(v*) multiplications and O(v*) additions. We will show
that we can accomplish it in at most v multiplications and
O@* log, v) additions if v is a power of 2 (or ¢ multiplica-
tions and O(-us) additions for and arbitrary v; in cither of
this cascs ¢ multiplications is the price of computing v!).
First we observe that the polynomial
Pu(d) =3 +1)... (i + v — 1) gives the same values for { =
1L,1+w,142u,...as pp(i) for i =1,2,3....
Secondly, observe that polvuomial
pe(d) =i(i —1)...(f — v + 1) gives the same values for i =

v, 20,30, ... as pp(d) for i = 1,2,3.... Now use the fact [12]
that p. (i) has a very special and easy to construct CR of the
length v for 4 starting from 0 with step 1:

Pe(D(E=0,1)y={0,+,0,+,....0,+,2!1}(i = 0. 1). (M
We can apply multiplication-free transformation Uz to this
CR log, v times and get

pr()i=0,v) =®(i =0,v) = 8
={po, oL+, F e HE=0,0). (8)
One application of shift finalizes the construction: the CR
E(®) being interpreted will provide values of p.(i),i =
1.2,3,.... This means that we get the following CR to com-
pute the first termn in (6):

V(i =0.1) = {1, % E(@)}. (9)
Applying E to ¥ will consequently compute values of
vl (20)!, ..., (kv)! performing v additions and 1 multiplica-

tion at each step. After k shifts Value(E*(¥)) gives the
value of A(k,v) in (6).

We can make scheme (9) even more effective involving
binary powering into the computational process. It follows
from definitions of Value, E and from basic properties of
pure-sum CRs [11] that

FE(c®) = cE(®),
Value(c®) = cValue(d),
Uy (e®) = clin (P)

(10)

for any constant ¢ and a pure-sum CR @. Also for CR in (7)
the following equality holds

0.+, .., 0.+, 0!} (i = 0,1) = v!{0, +,0, +, 1} (i = 0,1).
Starting with the CR {0,+,0,+....,0,+,1}(i = 0,1) instead
of {0,+.0,+,....0,+,v!}(7 = 0. 1) we get after log v applica-
tions of Uz a CR.

& = 0.v) = {Go,+, 1.+, B0} = 0,0).

instead of (8) (note. that ¥; = ¢;/v!,j =0,...,v) and write
¥ in (9) as
U(i=0,1) = {1,* v E(®)}.

It is now straightforward to check that

(11)

A(k,v) = Value(E*(¥)) =
= Value(E' ({1, v!\E(®)})) = (12)
= (¢)*Value(E* ({1.*, E(®)})).

With this transformation we replace k multiplications in (9)
by k multiplications of »!-times smaller numbers plus one
binary powering and one extra multiplication. For large
enough n with proper choice of v and & this last scheme
is faster, because it reduces the time of construction of CR
& and the time of interpretation of the scheme (brief analy-
sis will be given later). Table 3 contains timing for scheme
(12).

Remark 4. Obviously we could start consideration by
taking out v! factor from innermost product in (6). consider
polynomial p,(7)/v! instead of p.(7) and arrive to the same
scheme (11). For us it was important to show how this trans-
formation works in CR notation, because formulac (10) can

be used in the same manner in the general case. For ex-
ample, if f(¢) in (1) is a polynomial. after obtaining (5) it
can be useful to compute ged of components of CR ¥,

g, and take out the term g* in the same way as we have
done it with (¢1)¥. It will decrease the size of components
and the cost of multiplication and additions during shifting
CR ¥ in (5). We did not need to compute this ged in the
case f(i) = i because we knew its value (»!) in advance.
In the case of rational function f(i) more complex analysis
(e.g. computing of the dispersion of the numerator and de-
nominator) can help to cancel larger common factor which
will appear after unrolling. Somctimes this common factor
can be derived without computation of ged, as in the case
of binomials.

3.2 Binomials
Given large N and n compute

n
N N—-i+1
n) I:Il i

(we assume that n < N/2). For this computation there are
several different first-order recurrences to start with, e.g.

(.-"\.") — (.-"\-"—l
n n
We withdraw the third one because it requirecs N —n > n
steps to compute the result. First and second recurrences
correspond to different orderings of terms in the numerator
and the denominator of (13). We will start with the first
one and apply the procedure described in the beginning of
this section *. This procedure gives us the scheme (5) for
the first term in product (2), where ¥, = A/T: A and T are
both pure-sum CRs of the length v. It replaces ¢ multipli-
cations and v divisions by 2v additions, 1 multiplication and
1 division of larger numbers. However, as in the case of fac-
torial, it is known in advance that all components of A and
[are divisible by »! and this factor can be cancelled from
both numerator and denominator. Note, that it is not nec-
essary to perform actual cancellation. For denominator we
can compute the result of cancellation which is equal to the

F(n)= (13)

I

—n'

CR & from previous subsection (it can be done again with
log v applications of Us to the CR. {0, +,0,+,...,0,+,1} of
the length ¢). Construction of CR A is done in v —1 steps of
CR multiplication. After the step number j all components
of the intermediate result can be divided by j + 1. which
by the end will produce CR. A with the factor »' cancelled.
Timing for different computations with different unrolling
factor are given in Table 4.

3.3 Choosing the unrolling factor

In order to choose the unrolling factor for concrete problem
we must carry out some complexity analvsis. We can not rely
on bit-complexity analysis ouly, because, as shown earlier,
this will not give us true prediction of acceleration. That
is why our choice of v is heuristic, partially based on the
following observations about complexity.

Consider (6) and (12) and assume I = 0 for simplicity.
Informally we have the following trade-off:

*We do not discuss multiplication-free computation of (’:) using
the Pascal triangle here, because of the huge storage requirements.

80

1) we do not want = to be very large, because v is the length
of CR & in (12) .

2) we do not want k to be very large, because we have to
perform & multiplications computing E* in (12).

More formally:

1) the number of additions in the scheme (12) is always the
same — n = kv; the size of components of CR @ is hounded
by 2vL(v) (where L(u) denotes the number of digits of in-
teger « in corresponding number system); the cost of all
additions is 2nuvL(v).

2) the number of multiplications to compute E* in (12) is
k; j-th multiplier is equal to ((j — 1)e)" /v the cost of all
multiplications is O(r*klog((n+v—1)/(n—1)) if the Karast-
suba algorithm is disabled.

3) the time to construct the CR & is O(® log® v) if v is some
power of 2, or O(v" log v) otherwise.

4) there is yet 1 more binary powering to compute (v!)* and
1 final multiplication.

All this gives a non-lincar equation to be solved for estima-
tion the value of v. Enabling the Karatsuba algorithm makes
the analysis more complicated. Also, memory management,
has to be taken into account. Empirical results suggest that

good choice for v be some power of 2 close to /n/2.

4 An analog to binary powering

Earlier we saw that binary powering was appearing in the
factor v CR unrolling scheme to compute factorial. In this
section we find a more direct analog to binary powering.
We write n = k- 2¥ + 1, 1 <1 < 2%, Assuming that k! is
computed we can use the following recurrence for (k2")!

k2!

N, i _— o i-1 2.
(k-2 =({(k-27))) i1

i=1,2,...,w. (14)

This is an analog to binary powering. At each step squar-
ing and some extra work is being performed. This extra
work here is of course more expensive than that in the case
of powering, but the squaring operation dominates. For
the sccond term in (14) we construct a CR of the form
@(j =0,1) = {(;")* %} Straightforward use of this CR

will double the number of steps in j between (kﬁ?_,) and

it) . .
(I‘;,.,,-) But we can apply the transformation U after ev-

ery k steps in 7. There are also several technical observations
here influencing the effectiveness of the actual computations.

.) . . . - il
The simplification of the basic recurrence for (-f,)

2 —~2\2j(25 - 1) (2j—-2\2(2j—-1)

2j
' 72 i=1)7

J j-1

is useful. If we additionally use factor v unrolling of this
recurrence we reduce the size of the numerator and denom-
inator (due to cancellation by !} and as in the case of bi-
nomials we save v — 1 multiplications and » — 1 divisions at
each step. Also there is factor 218721 which can be taken out
from numerator of the CR (in systems with base equal to
power of 2 it will be cheaper to perform one hardware shift

11t scems very attractive to set & = 2,v = n/2 in (12) and
compute ¢! recursivelv with the similar schewe, but in this case
Value(E"'({l. *, E(<i>)})) = (‘:') and CR @ keeps essentially the same

20
,.

information as the corresponding to () line of Pascal triangle.

Maple Sp NTL Sp. Java Sp.
time C+iI+F time C+I+F thine
6400!
RM 11.08 2.53 8.90
UF 16 2.06 0.03 +1.88 4+ 0.15 3.37 0.66 0.0+ 0.55+0.11 3.83 1.61 5.53
UL 32 1.81 0.19 4+ 1.46 + 0.16 6.11 0.55 0.0+ 0.44 4+ 0.11 1.6 1.56 5. 71
UF 64 2.58 1.3241.07 + 0.19 4.29 0.44 0.0+ 0.3340.11 5.75 2,18 1.08
UF 128 14.69 12.62 4 L.88 4+ 0.19 0.75 0.55 0.274+0.174+0.11 1.6 6.95 1.28
12800!
RM H4.97 9.61 10.34
UrF 32 6.55 0.17T + 5.78 + 0.6 8.39 2.58 0.0+ 2.20 4 0.38 3.7: 6.24 6.6
UF 64 5.58 1.243.734+0.65 9.85 1.98 0.0+ 1.65 +0.33 4.87 6.6-1 6.08
UF 128 17.81 11.96 4+ 5.14 4+ 0.71 3.09 1.65 0.28 4+ 0.99 4+ 0.38 5.8 L1.05 3.65
UL 256 110.31 106.73 + 2.8340.75 0.19 2.75 1.7+ 0.61 4 0.44 3.49 43.62 0.92
320001
RM 115.35 65.42 301.41
Uk 32 39.04 0.2+ 3591429 10.64 19.93 0.0+ 18.29 4+ 1.64 3.28 47.04 6.11
UF 64 28.01 1.1 4 23.84 + 3.07 14.83 14.83 0.06 + 13.024 1.75 4.11 43.87 6.87
UF 128 37.2 11.95 4+ 21.88 -+ 3.39 11.17 | 10.49 0.22 4 8.41 +1.86 6.23 18.00 6.28
UF 256 126.13 109.65 + 12.81 + 3.67 3.29 8.90 1.65 + 5.27 + 1.98 7.35 78.74 3.83

Table 3: Speedup given by unrolling and CR. techniques for computation of factorials in 3 systems (time in sec.): (UF - unrolling factor, RM
— repeated multiplication, Sp — speed up; €' 4 1 4+ F — times for construction of a CR, interpretation of the CR and binary powering together

with final multiplication in (12).)

at the end). Table 5 gives timing for different values of n in
Maple, C++(NTL) and Java.

Maple NTI, Java
12800!
RM 53.38 9.66 40.76
BAF 4.38(3.19) 0.88 (0.44) 5.21 (L1.21)
speedup 12.19 10.93 T.82
25600!
RM 248.96 40.87 189.02
BAF 13.08(9.00) 3.13 (1.43) 22.74 (3.62)
speedup 19.04 13.06 8.31
51200!
RM 1109.22 176.20 819.02
BAF 45.57(33.93) | 10.76 (5.04) | 102.05 (1.03)
speedup 24.34 16.28 8.03

Table 5: Speedup given by an analog (o binary powering for

computation of factorials (BAT) in 3 systems (time in sec.): (RM -
repeated multiplication, parenthesized times are the times for compu-
tation of binomial cocfficients in (14).)

5 Implementation

All algorithms described in this paper were implemented in
Maple, C++ and Java. The Maple implementation extends
the Maple CR. package [6]. Parts of the routines were opti-
mized for arbitrary precision arithmetic, which reduced con-
struction time significantly.

Our C++ implementation was built on top of NTL li-
brary because of NTL's power and flexibility. The NTL li-
brary allows control over memory allocation and supports
optional use of the Karatsuba algorithm. The implementa-
tion encapsulates a CR. engine, which was specifically de-
signed for this purpose, and provides the user with a set of
classes and routines to compute products, including factori-
als, binomial coefficients, ct¢. The implementation is a C++
library, which can be linked to any application on the variety
of platforms supported by NTL.

Java BigInteger numbers were chosen for our experiments
mostly because of Java’s popularity. Morcover, the perfor-
mance constraints of Java Virtual Machines make it impor-
tant to accelcrate time-consuming operations. The Java im-

81

plementation is similar to the C++ implementation. It is a
package, containing classes for basic CR. tools and wrapping
classes for products-computing routines. This package can
be easily included into any Java project.

6 Concluding remarks

We presented in this paper an approach to accelerating the
computation of n-ary products for large n over arbitrary
precision integers. The main tool was a combination of CR
techniques, loop unrolling and binary powering. Return to
Table 1 and compare the timings for new implementations

(Table 6) of tasks T2, T3 with the previous.

T2 T3
Maple | 7.75 (140.07) | 823.17 (6153.48)
NTL | 1.98 (24.39) | 124.62 (488.52)
Java | 14.11 (109.41) | 299.72 (3161.73)

Table 6: Final time in seconds for T2 and T3 in 3 systems;
time before improvement is given in brackets; all Maple tim-
ings are based on interpreted (library) code.

The techuique proposed here is easy to combine with
other fast methods to compute products. For example, one
can find in [3] a fast formula to compute factorial, which is
based on binary splitting algorithm combined with a reduc-
tion of the even factors into odd factors and multiplication
by a power of 2. Application of the CR-based unrolling
technique to the innermost product in this formula is casy
to implement. Our preliminary experiments show a 2 to 3
times acceleration after such a combination, although the
resulting scheme is still slower than (14).

A factor v unrolling of a CR. for f(i),i = 0,1,... cor-
responds to the substitution 7 = wvi into the closed form
expression for f. There are two possibilities:

a) (numeric) to constrnct the CR for f(i),i = 0,1,... after
substitution; b) (symbolic) to construct a CR for f(i),i =
0, h,2h, ... symbolically and when the value of v is decided
- to substitute it = v in this CR. This will require numer-
ical computations after the substitution, whose complexity

Maple speed- NTL speed- Java
time up up time speedup

20000

(moou)
ST 15.12 3.00 10.45
Ur 25 3.57 (0.11) 4.23 1.16 (0) 2.59 2.17 (0.09) 4.82
UF 50 3.41 (0.72) 4.44 0.99 (0.02) 3.03 2.27 (0.66) 4.6
UF 100 4.62 (2.12) 3.27 0.94 (0.18) 3.19 3.96 (3.75) 2.61
UF 200 21.6 (19.94) 0.7 2.2 (1.56) 1.36 24,15 (23.95) 0.43

50000

(10000)
ST 35.26 4.64 25.71
UF 25 8.52 (0.12) 4.14 1.91 (0.01) 2.43 4.88 (0.10) 5.27
UF 50 7.55 (0.74) 4.67 1.57 (0.02) 2.96 4.83 (0.71) 5.32
UF 100 8.56 (2.25) 4.12 1.37 (0.18) 3.39 7.75 (3.80) 3.32
UFE 200 26.35(20.72) 1.34 2.55 (1.58) 1.82 28.62 (24.28) 0.90
(§onno)

25000
ST 200.04 19.11 112,16
UF 25 39.46(0.12) 5.07 8.15 (0) 2.34 18.73 (0.11) 5.99
UF 50 34.49(0.75) 5.80 6.67 (0.02) 2.87 16.09 (0.71) 6.97
UF 100 32.63(2.54) 6.13 5.42 (0.19) 3.53 17.90 (3.84) 6.27
UL 200 53.32(23.14) 3.75 5.8 (1.63) 3.29 38.77 (24.33) 2.89
(zooooo)

100000
ST 4167.87 311.05 2089.42
UF 25 654.3 (0.14) 6.37 149.28 (0) 2.08 288.47 (0.11) 7.24
UF 50 570.16 (0.77) 7.31 120.4(0.02) 2.58 234.31 (0.77) 8.92
UF 100 494.41 (2.56) 8.43 95.42(0.19) 3.26 205.70 (4.01) 10.16
UF 200 502.96(24.07) 8.29 78.96(1.63) 3.94 212.07 (25.26) 9.85

Table 4:

Speedup given by unrolling and CR techniques for computation of binomials in 3 systems (time in sec.): (UF - unrolling factor, ST

- straightforward use of the first-order recurrence, parenthesized times are the times for construction of CRs A and I'.)

is not better than the complexity of case a). In this pa-
per we described an alternative numeric approach which is
quite suitable for computation of factorials or binomials. In
the general case (1) (when f(i) is not known in advance)
svmbolic-numeric mixture of a) and b) can help, allowing
symbolic simplifications.

It would be also interesting to carry out the series of ex-
periments on a parallel architecture (especially SIMD type).
The rcason for this is that basic gperations on CRs (E(®),
U,(®) etc.) arc highly parallelizable and methods from [9]
reduce the shift of a CR to two parallel operations only, e.g.
one parallel shift and one parallel addition. This will change
the heuristics for v and w. The choice of v and w will also be
different if we apply this technique to the computations mod-
ulo a large natural number (not necessarily prime). It will
move us closer to fixed point arithmetic. We also think that
improvements to our technique may be possible if a modu-
lar implementation of arbitrary precision integer arithmetic
is used. Also p-adic representation of numbers can bring new
possibilities for further progress.

Acknowledgments

The authors would like to thank Chris Howlett (Web Pearls
Inc.) for his help during preparation of this paper. The
third author is grateful to Bruno Salvy (INRIA, France) for
pointing out the reference [3] and for useful remarks to the
first draft, and also to Ha Quang Le (University of Waterloo)
for many discussions during the work on the paper.

References
[1] Bix1D., Pan V. Polynomial and Matriz Computations.
Fundamental Algorithms, vol.1. Birkhauser, 1994.

[2] BorwEIN J., BOoRWEIN P. Pi and the AGM. Wiley,
1987.

82

B3l

(10]

11]

[12]

CHar B.W., Geppes K.OQO., GonNeT G.H,,
LeonNG B.L., MoNaGAN M.B., WaTT S.M. Maple-V.
Language Reference Manual. Springer-Verlag, 1991.

CoHiN H. A Course in Computational Algebraic Num-
ber Theory. Springer-Verlag, 1995.

HaisLe B., PapaNikorLaotu T. Fast multiprecision
evaluation of series of rational numbers. Technical re-
port TI-97/7. Tech. rep., University of Darmstadt,
1997.

KISLENKOV V., MITROFANOV V., ZiMa E. Multidi-
mensional Chains of Recurrences. In Proc. of ISSAC’98,
Rostock, Germany, ACM Press (1998), pp. 199-206.

Kxutn D.E. The art of computer programming. V.2.
Seminumerical Algorithms. Third edition. Addison-
Wesley, 1997.

SHOUP V. http://www.cs.wisc.edu/"shoup/ntl/.

Zima E. Recurrent relations technique to vectorize
function evaluation in loops. In PARCELLA’94, Pots-
dam, Germany (1994), pp. 161-168.

ZiMA E.V. Automatic construction of systems of recur-
rence relations. USSR Comput. Maths. Math. Phys., N
6 24 (1984), 193-197.

ZiMa E.V. Simplification and Optimization Trans-
formations of Chains of Recurrences. In Proc. of IS-
SAC’95, Montreal, Canada, ACM Press (1995), pp. 42—
50.

ZiMA E.V. Safe numerical computations with chains of
recurrences. Programmirovanie N & (1997), 36-42.

