

ISSN 0361-7688, Programming and Computer Software, 2007, Vol. 33, No. 2, pp. 80–86. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © E.V. Zima, A.M. Stewart, 2007, published in Programmirovanie, 2007, Vol. 33, No. 2.

80

1. INTRODUCTION

Modular algorithms present a popular tool for com-
putation acceleration in different areas of computer
algebra. They are successfully used for calculation of
the greatest common divisors of polynomials, polyno-
mial factorization, in problems of symbolic linear alge-
bra, for symbolic integration and summation. Modular
approach to symbolic computations has several advan-
tageous features. One of them is the possibility to con-
trol the size of intermediate results, which is often
impossible in the case of computations with arbitrary
precision integer or rational numbers. This implies
faster and more efficient implementations of symbolic
algorithms.

Conversion to a modular representation is also a
popular technique to accelerate the basic arbitrary pre-
cision arithmetic of computer algebra systems. This
paper considers methods of moduli selection and mod-
ular arithmetic implementation that reduce time for
performing basic arithmetic operations and time to con-
vert arbitrary precision integers to the modular repre-
sentation and back. If modulus

m

 is not chosen in a spe-
cific way, division operation may be required to obtain
the residue, which is a rather expensive operation, even
if the modulus is representable by a standard machine
word (64 or 32 bits). The simplest way to avoid division
is to choose the modulus of the form 2

n

 – 1 [1]. The case
of modulus of the form 2

n

 + 1 is of interest as well.
The numbers of the form

b

n

±

 1 are called Cunning-
ham numbers with the base

b.

1

 The book [2] contains
tables of Cunningham numbers factorizations and their
history. For computer implementation of modular arith-

1

Note that any positive integer

X

 is a Cunningham number, for
example, with the base

X

±

 1, that is why a usual constraint is

b

∈

{2, 3, 5, 6, 7, 10, 11, 12}.

metic, the case of

b

 = 2 presents a particular interest.
Sets of Cunningham numbers of the forms 2

n

 + 1 and
2

n

 – 1 are denoted as 2+ and 2–, respectively [3].

2. BACKGROUND INFORMATION

The idea of modular calculations consists in select-
ing positive integers

m

1

,

m

2

, …,

m

k

, referred to as mod-
uli; replacing the initial integer data by residues modulo

m

i

; and performing a series of identical calculations
modulo

m

i

 (for every

i

= 1, …,

k

) instead of required
calculations with long integer numbers. On the final
stage, the result needs to be reconstructed from the res-
idues. The possibility of reconstruction is based on the
Chinese remainder theorem [1] if, for example, all the
moduli are pairwise coprime and all the intermediate
and final results do not exceed

m

1

m

2

…

m

k

. Though it is
not necessary, we will further assume that all the mod-
uli are pairwise coprime and the minimum nonnegative
system of moduli is used; i.e., all the residues modulo

m

i

 are taken from the set 0, 1, …,

m

i

 – 1.
The choice of specific values of

m

i

 can influence sig-
nificantly the time complexity of both calculations
modulo

m

i

 and reconstruction of the result. For exam-
ple, after multiplication of numbers, in the general case,
division by

m

i

 may be needed to obtain the residue
value. At the sane time, if

m

i

 = 2

n

 – 1, then calculation
of the residue reduces to shift and addition operations
that are much simpler.

Conversion to modular representation is advanta-
geous when heavy calculations are to be performed in
the ring of integers, which require many multiplica-
tions, additions, and subtractions. Modular representa-
tion gives no advantages for addition and subtraction
operations, but it can accelerate multiplication consid-
erably. Let

M

(

n

) be the time complexity of multiplica-

Cunningham Numbers in Modular Arithmetic

E. V. Zima

a

 and A. M. Stewart

b

a

 Physics and Computer Science Department, Wilfrid Laurier University,
75 University Avenue West, Waterloo, Ontario, Canada N2L 3C5

E-mail: ezima@wlu.ca

b

 Symbolic Computation Group, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
E-mail: am2steward@uwaterloo.ca

Received July 1, 2006

Abstract

—The paper considers methods for modular arithmetic acceleration, based on a specific moduli selec-
tion method. Special attention is paid to the moduli of the form 2

n

 – 1 and 2

n

+ 1. Different schemes of choice
of these types of moduli and algorithms for conversion of arbitrary precision integers into the modular repre-
sentation and back are considered. Results of experimental implementation of the described algorithms in the
GMP system are discussed.

DOI:

10.1134/S0361768807020053

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 2

2007

CUNNINGHAM NUMBERS IN MODULAR ARITHMETIC 81

tion of two integer numbers of bit length

n

, and let mod-
uli

m

1

, …,

m

k

 be chosen to have approximately the same

bit length equal to . Multiplication of two integers of

bit length

n

 in modular representation reduces to multi-

plying

k

 pairs of numbers of length and has the time

complexity of

kM

. For sufficiently large

k

, this

considerably speeds up not only elementary multiplica-
tion algorithm for integers with

M

(

n

)

∈

Θ

(

n

2

) but also

fast Karatsuba (

M

(

n

)

∈

Θ

()) or Schönhage-
Shtrassen (

M

(

n

)

∈

Θ

(

n

log

n

loglog

n

)) algorithms, if, of
course, we do not take into account the time needed for
conversion into modular representation and back.

Note that even addition and subtraction operations
can be accelerated if parallel machine is used, since cal-
culations for different moduli can be performed simul-
taneously.

Let us consider factors affecting the choice of the
moduli while implementing modular arithmetic on
computer. It is very simple to perform calculations
modulo 2

n

. One should simply ignore any overflow of
the

n

-bit grid. Unfortunately, numbers of type 2

n

,

n

> 1,
are not coprime. Using Cunningham numbers as mod-
uli is attractive, since performing calculations modulo
2

n

±

 1 is almost as simple as modulo 2

n

, and there are
sufficiently many coprime integers among Cunning-
ham numbers.

As it is widely known [1], GCD(2

n

 – 1, 2

m

 – 1) =
2

GCD(

n

,

m

)

 – 1. Consequently, numbers 2

n

 – 1 and 2

m

 – 1
are coprime if and only if

n

 and

m

 and coprime. A sim-
ilar (and even simpler) fact for numbers of type 2

n

 + 1
is less known. Let

ν

2

(

x

) denote the maximum degree of
2 that is contained in

x

. Numbers 2

m

 + 1 and 2

n

 + 1 are
coprime if and only if

ν

2

(

m

)

≠

ν

2

(

n

).

This is a corollary of a more general result: for any
positive integers

a

,

n

,

m

,

a

> 1 [4],

It is interesting that the latter result is not usually
mentioned in monographs, such as [1], and textbooks
on number theory. In the book [5] devoted to Fermat
numbers [5] (which appeared 11 years later after publi-

2n
k

2n
k

2n
k

------⎝ ⎠
⎛ ⎞

n
32log

GCD am 1+ an 1+,()

=

aGCD m n,() 1, if ν2 m()+ ν2 n()=

1, if ν2 m() ν2 n()≠
and a is even

2, if ν2 m() ν2 n()≠
and a is odd.⎩

⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

cation [4]), only a particular case of this result is
proven:

If the Cunningham numbers of type 2– or 2+ are
used, the choice of the modulus is essentially the choice
of the exponent. These exponents should satisfy a sim-
ple rule depending on the type of the number we work
with. For numbers of type 2–, the exponents must be
coprime. For numbers of type 2+, binary notation of the
exponents should not end with the same number of
zeros. Different strategies of exponent selection in the
case of numbers of type 2–, including the simplest strat-
egy of choosing only prime numbers as exponents, are
discussed in [1, 6].

For numbers of type 2+, the simplest scheme of
modulus choice is based on “shift”: the first exponent a
is chosen in an arbitrary way; every consecutive expo-
nent is obtained from the previous one by multiplying
by 2 (which corresponds to the one bit left shift in
binary notation). This scheme generates moduli 2a + 1,

22a + 1, 24a + 1, …, + 1. If a is chosen to be equal
to 1, then the moduli are consecutive Fermat numbers

21 + 1, 22 + 1, 24 + 1, …, + 1, ….

Another (“block”) strategy consists in generating
exponents of the same bit length, which gives a series
of moduli that is better balanced in lengths. First, the
number of moduli b is chosen, and the exponents e1, e2,
…, eb are generated using recurrence eb = 2b + 1 – 1, ek =
ek + 1 – 2b – k – 1, k = b – 1, b – 2, …, 1. Thus, binary nota-
tion of the exponent ei (i = 1, …, b) ends with (b – i)
zeros following 1, which ensures coprimality of the
corresponding moduli. For example, for b = 4, the fol-
lowing four moduli with 4-bit exponents will be gener-
ated: 8, 12, 14, and 15.

We assume that the size of initial data and all inter-
mediate results can be estimated a priori, and, thus, it is
possible to choose a priori the number of moduli b
ensuring correct reconstruction of the result from resi-
dues. If one needs to add a modulus in the process of
calculations, this presents no difficulty in the case of
using the “shift” scheme. In the case of using the
“block” scheme, it is possible to add moduli from the
next block with the exponents of bit length 2b ending
with b + 1, b + 2, … zeros. Both schemes allow efficient
generation of moduli and avoid verification of exponent
coprimality.

One of the obvious disadvantages of the scheme
based of the “shift” is the imbalance of the moduli in

GCD 2m 1+ 2mn, 1+()

=
1, if n is even

2m 1, if n is odd.+⎩
⎨
⎧

22i
a

22i

82

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 2 2007

ZIMA, STEWART

length. However, this scheme has some attractive prop-
erties as well. Let us consider moduli of the type

(1)

with arbitrary positive integer a and the products

(2)

Proposition 1.

(3)

Proof. Note that

(4)

Consider

(5)

It is easy to check that

(6)

Indeed, substituting L for 2i in (4) and (5), we can
take advantage of the geometric summation formula.
The first term in the left-hand side of (6) is equal to

and the second term is equal to

Expanding the first term, we obtain

and expanding the second term, we get

mi 2a2i

1, i+ 0 1 … k,, , ,= =

Mi m j

j 0=

i 1–

∏ 2a2 j

1+(),
j 0=

i 1–

∏= =

i 1 2 … k., , ,=

Mi
1– modmi 2a2i 1– 2a 1–– 1,+=

i 1 2 … k., , ,=

Mi 2aj, i
j 0=

2i 1–

∑ 1 2 …., ,= =

si 2a2i 1– 2a 1–– 1,+=

ti Mi 1–()/2– 2aj 1–

j 1=

2i 1–

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

,= =

i 1 2 …., ,=

Misi miti+ 1, i 1 2 …., ,= =

2a()L
1–

2a 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

2aL 1– 2a 1–– 1+(),

1/2
2a()L

2a–

2a 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

2aL 1+().–

1/2
2aL()2

2aL2a– 2aL 2a 2–+ +

2a 1–
---,

1/2
2aL()2

2aL 2aL2a– 2a–+

2a 1–
--.–

Adding the last two expressions together, we obtain

Taking into consideration coprimality of Mi and mi
in (6), we obtain the required result.

The numbers mod mi are used in the algorithms
of reconstruction from residues [1]. In the “shift”
scheme of modulus choice, it is not necessary to calcu-
late and store these values, since they are uniquely
determined by the value of a and the modulus number
i. As will be shown below, some variants of the Chinese
algorithm become totally free of multiplications, since

multiplication by (mod mi) is implemented by two
shift operations, addition, and subtraction. In the case
of a = 1, only one shift operation is needed.

A more general result is valid for an arbitrary
numerical system with an even base B. Consider mod-

uli of type mi = + 1 (i = 0, 1, …, k) and products

Mi = = (i = 1, 2, …, k).

Proposition 2.

Proof. Noting that Mi = , i = 1, 2, …, we set

It is easy to check that Misi + miti = 1, i = 1, 2, ….
Taking into consideration coprimality of mi and Mi, we
obtain the required result.

This result can be used for implementation of multi-
plication-free modular arithmetic algorithms similar to
those considered below in computer algebra systems
that use integer number representation with bases 10 or
10l. Just as for GMP system, it is not necessary to cal-

culate and store numbers modmi, and the complex-
ity of multiplication by these numbers is proportional to
the bit length of the result.

3. MODULAR ARITHMETIC WITH
CUNNINGHAM NUMBERS AS MODULI

Let m, u, and v be positive integers such that 0 ≤ u,
v < m. In calculating u ± vmodm, an additional sub-
traction (if u ± v ≥ m) or addition (if u ± v < 0) may be
needed. In order to calculate u × vmodm, a division
with remainder may be needed (if u × v ≥ m). Bit com-
plexity of division with remainder has an order of mag-
nitude of M(log2m).

22a 2–

2 2a 1–()
---------------------- 1.=

Mi
1–

Mi
1–

B2i

m jj 0=
i 1–∏ B2 j

1+()
j 0=
i 1–∏

Mi
1– mod mi

B2i

B– 2+
2

-------------------------, i 1 2 … k., , ,= =

B j

j 0=
2i 1–∑

si
B2i

B– 2+
2

-------------------------, ti

Mi 1–
2

---------------, i– 1 2 …., ,= = =

Mi
1–

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 2 2007

CUNNINGHAM NUMBERS IN MODULAR ARITHMETIC 83

If modulus m is of type 2n – 1, then the addition (⊕),
subtraction (�), and multiplication (⊗) operations can
be defined as [1]

(7)

(8)

(9)

Here, just as in [1], [B] denotes characteristic func-
tion of a Boolean expression B: (B ⇒ 1; 0). In fact, in
(7), we have ordinary addition modulo 2n, and, in the
case of overflow, the obtained result is increased by 1
(note, that repeated overflow cannot occur in this
case).2

In (9), ordinary multiplication is performed; then, n
lower bits are added to the upper n bits using the oper-
ation defined in (7). Thus, potential division by m with
remainder is replaced by addition and shifts, which are
operations of bit complexity Θ(log2m). This speeds up
basic operations not only in the case of very large mod-
uli m but even for moduli of the length of one machine
word.

Similarly, if modulus m is of type 2n + 1, then addi-
tion (⊕), subtraction (�), and multiplication (⊗) can be
defined as follows:

(10)

(11)

(12)

Thus, the use of the Cunningham numbers speeds
up basic operations of modular arithmetic.

4. CONVERSION INTO MODULAR
REPRESENTATION

Operation of bit substring extraction from the binary
representation of a positive integer will be frequently
used below. Consider a function BITS(a, m, n) that
returns a positive integer consisting of the binary digits

of a with positions from m to n. Thus, if a =
(ai ∈ {0, 1}) and m ≤ n ≤ l, then

In order to obtain the remainder of division of a by
2n – 1 in the case of a < 22n, we can use the same method
as in (9):

2 Note that, in this version of modular arithmetic, the number 0 can
be also represented as 2n – 1, and this does not violate correctness
of the result.

u v⊕ u v+() mod 2n() u v+ 2n≥[],+=

u � v u v–() mod 2n() u v<[],–=

u v⊗ uv mod 2n() uv /2 .⊕=

u v⊕ u v+() mod 2n() u v+ 2n>[],–=

u � v u v–() mod 2n() u v<[],+=

u v⊗ uv mod 2n() � uv /2n .=

ai2
i

i 0=
l∑

BITS a m n, ,() am i+ 2i.
i 0=

n m–

∑=

Algorithm 1 Simple-Reduce-Minus(a, n)—calculates
amod(2n – 1).

Require: 0 ≤ a < 22n

Ensure: 0 ≤ a ≤ 2n – 1
1: t BITS(a, n, 2n – 1)
2: a BITS(a, 0, n – 1)
3: a a + t
4: t BITS(a, n, n)
5: a BITS(a, 0, n – 1) + t

If the bit length of the number a is greater than 2n,
some more operations need to be performed (see [1]).
Let |a | be the bit length of number a. Then,

where t = ⎡|a |/n⎤ and 0 ≤ xi < 2n, i = 0, 1, …, t. Using the
fact that 2n ≡ 1 mod 2n – 1, we obtain a ≡ xt + xt – 1 + …
+ x1 + x0 mod (2n – 1). Thus, in order to calculate a mod
(2n – 1) one should partition binary representation of
number a into n-bit blocks and sum up the obtained
numbers modulo (2n – 1). The variant of this algorithm
from [1] is presented below.

Algorithm 2 Theoretic-Reduce-Minus(a, n)—calcu-
lates amod(2n – 1).

Require: 0 ≤ a
Ensure: The returned number r satisfies the condition
0 ≤ r ≤ 2n – 1

1: r 0
2: b (|a | – 1)/n + 1
3: for i = 0 to b – 1
4: r r + BITS(a, i · n, (i + 1) · n – 1)
5: end for
6: if r ≥ 2n then
7: return THEORETIC-REDUCE-MINUS(r, n)
8: else
9: return r

10: end if

The bit complexity of this algorithm is Θ(|a |) (which
is better than complexity of division of a |a |-bit number
by an n-bit number) assuming that n ∈ Θ(1), and
BITS(a, m, n) has complexity Θ(n – m). Unfortunately,
in the case of the GMP package, the latter assumption
is not valid. In order to extract a bit substring of length
l from an integer a in GMP, Θ(|a |) operations are
needed, in spite of repeated requests from users to
improve this situation [7]. Thus, the bit complexity of
the implementation of this algorithm in GMP is
Θ(|a |2/n).

a xt2
nt xt 1– 2n t 1–() … x12n x0,+ + + +=

84

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 2 2007

ZIMA, STEWART

Nevertheless, obtaining the remainder with com-
plexity Θ(|a |) is possible by using the “divide-and-con-
quer” strategy, as shown in the following algorithm:

Algorithm 3 DC-Reduce-Minus(a, n)—calculates
amod(2n – 1).

Require: 0 ≤ a

Ensure: 0 ≤ a ≤ 2n – 1

1: while a ≥ 2n do

2: b (|a | – 1)/n + 1

3: b b/2

4: t BITS(a, bn, 2bn – 1)

5: a BITS(a, 0, bn – 1)

6: a a + t

7: end while

8: return a

This algorithm uses the fact that, for any positive
integers x and y, number 2x – 1 divides 2xy – 1. On each
iteration, the binary representation of the current value
of a is partitioned into two blocks of length divisible by
n, which are then summed up. Congruence BITS(a, 0,
bn – 1) + BITS(a, bn, 2bn – 1) ≡ a mod (2n – 1) is con-
served.

Algorithms 1 and 2 can be modified in order to cal-
culate remainders modulo 2n + 1 in the same way as
(10)–(12) are modifications of (7)–(9) using the equal-
ity 2n ≡ –1 (mod 2n + 1) instead of 2n ≡ 1 (mod 2n – 1).
In order to calculate the remainder for |a | > 2n with
costs Θ(|a |), one can use the fact that 2n + 1 divides
22n – 1 and calculate the remainder modulo 22n – 1,
which can be then easily reduced modulo 2n + 1, as
shown in the following algorithm:

Algorithm 4 DC-Reduce-Plus(a, n)—calculates a mod
2n + 1.

Require: 0 ≤ a

Ensure: 0 ≤ a ≤ 2n + 1

1: DC-REDUCE-MINUS(a, 2n)

2: t BITS(a, n, 2n – 1)

3: a BITS(a, 0, n – 1)

4: a a – t

5: if a < 0 then

6: a a + 2n + 1

7: end if

8: return a

5. RECONSTRUCTION OF RESULT
FROM RESIDUES

Below we present the Garner algorithm, one of the
popular algorithms for reconstructing a positive integer
from the residues.

Algorithm 5 Garner(r, m)

Require: ∀i ∈ [0, N – 1]: 0 ≤ ri < mi

Ensure: a ≡ ri mod mi

1: M 1
2: for i = 1 to N – 1 do
3: M Mmi – 1

4: Mi M–1 mod mi

5: end for
6: a0 r0

7: for i = 1 to N – 1 do
8: t ai – 1

9: for j = i – 2 downto 0 do
10: t tmj

11: t t + aj

12: end for
13: t ri – t
14: ai tMi mod mi

15: end for
16: a aN – 1

17: for i = N – 1 downto 0
18: a ami

19: a a + ai

20: end for
21: return a

The prove of correctness of this algorithm can be
found in standard textbooks on computer algebra [1, 8];
therefore, we will only give a brief comment to the
algorithm and discuss optimizations brought by using
the Cunningham numbers.

In lines 1–5 of the algorithm, intermediate values

mod mi are calculated. Note that these
values can be calculated once and then be used every
time we need to reconstruct the result obtained in the
same system of moduli. In lines 6–15, coefficients of
the mixed radix representation are calculated, i.e., num-
bers a0, a1, …, aN – 1 such that

and X ≡ ri(mod mi), i = 0, 1, …, N – 1. In lines 16–20,
the value of X is calculated using Horner’s method.

If Cunningham numbers of types 2+ or 2– are used
as the moduli, multiplying by modulus mi (lines 3, 10,

m jj 0=
i 1–∏() 1–

X a0 a1m0 a2m0m1 …+ + +=

+ aN 1– m0m1…mN 2– ,

0 ai mi, 0 X m0m1…mN 1– ,<≤<≤

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 2 2007

CUNNINGHAM NUMBERS IN MODULAR ARITHMETIC 85

18) and calculating the remainder of division by mi
(lines 4 and 14) are replaced by shifts, additions, and
subtractions. If the scheme with the choice of moduli of
type 2+ based on “shifts” is used, there is no longer
need in calculating and storing the intermediate values in
lines 1–5, and multiplication by such a value (line 14)
is replaced by shifts and additions-subtractions with the
use of (3). Thus, we obtain a multiplication-free imple-
mentation of the Garner algorithm.

There also exist other variants of reconstruction
algorithms. The algorithm presented below uses the
same auxiliary values as the Garner algorithm, but does
not calculate an intermediate mixed radix representa-
tion

Algorithm 6 Simple–Reconstruction(r, m)

Require: ∀i ∈ [0, N – 1]: 0 ≤ ri < mi

Ensure: a ≡ ri mod mi

1: M 1
2: for i = 1 to N – 1 do
3: M Mmi – 1

4: Mi M–1 mod mi

5: end for
6: a r0

7: M m0

8: for i = 1 to N – 1 do
9: t ri – a

10: t tMi mod mi

11: a a + tM
12: M Mmi

13: end for
14: return a

Like in the case of the Garner algorithm, this algo-
rithm can be improved by using the Cunningham num-
bers. If the scheme of the choice of moduli of type 2+
based on shifts is used, there is either no need in calcu-
lating and storing the intermediate values in lines 1–5.
The only multiplication that can not be avoided is that
by M in line 11 where M = m0, m1, …, mi – 1 in the ith
iteration. However, having chosen parameter a in (1)
large, we can take advantage of sparsity of the binary
representation of the product of moduli (see [4]) and
reduce this multiplication to a series of shifts and addi-
tions.

6. IMPLEMENTATION

In order to confirm experimentally that the Cun-
ningham numbers can speed up integer arithmetic, all
the algorithms described above were implemented in
C++, as an application for the GMP program package
[9]. Both standard versions of these algorithms (i.e.,
versions that do not take into consideration the specific
modulus type) and the versions optimized for the Cun-

ningham numbers of types 2– and 2+ were imple-
mented. Besides, we also implemented a version of
modular arithmetic that uses only prime moduli with
the bit length not exceeding machine word.

In order to compare the time costs of different
implementations, we used the same problem with the
initial data of different bit length, namely, multiplica-
tion of two matrices with integer elements. Matrices of
sizes 64 × 64 and 128 × 128 were generated randomly
using tools of the GMP package. The bit length of the

matrix elements varied from 16 to 12288 = · 8192

bits.
Test runs were held on the AMD Duron 750M pro-

cessor with 512 Mb RAM in the Debian GNU/Linux
operating system supplied with the GMP package ver-
sion 4.1.4–6. We used the GNU g++ compiler version
1:3.3.5–13. For the sake of comparison, each matrix
multiplication was also run using the GMP built-in fast
integer arithmetic (mpz_class methods). A detailed
description of the implementation, as well as compari-
son of run times for different sizes of input data, can be
found in [10]. Here, we present only several revealed
observations.

• For comparatively small values of bit length of the
matrices elements, the GMP built-in arithmetic is the
fastest. This is not surprising, since the GMP package
contains implementations of the best algorithms of
integer multiplication optimized for the processor
architecture and chooses the fastest code for the spe-
cific size of the multipliers.

• Modular arithmetic optimized for the Cunningham
numbers is always faster than the standard modular
arithmetic.

• The time for the result reconstruction is reduced
considerably if the multiplication-free variant of the
Garner algorithm is used: from 20% of total problem
run time to 0.4% for the same input data.

• When the bit length of matrix elements increases,
the implementation that uses the shift scheme gener-
ated moduli of type 2+ starts to prevail over the fast
GMP arithmetic. For example, multiplication of two
pseudorandom matrices of size 64 × 64 with the ele-
ments uniformly distributed between 0 and 232768 – 1
based on the use of the shift scheme with the first mod-
ulus 265 + 1 took 283 seconds. The same calculation by
the mpz_class methods took 495 seconds.

• Efficiency of the shift scheme depends on the
selection of the parameter a (exponent of the smallest
modulus). The appropriate selection is possible when
the initial data allow obtaining a good estimate of the
result size.

Note that the use of the Cunningham numbers saves
memory as well. Instead of the moduli, the correspond-
ing exponent values are stored: if the maximum size of
intermediate results is equal to N, then, instead of
approximately N bits, only log2N bits are required for

3
2

86

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 2 2007

ZIMA, STEWART

storing moduli m1, …, mk. If numbers of type 2+ with
the shift scheme of modulus generation are used,
log2a + log2log2N bits are required, since one needs to
store only the smallest exponent a and number i for

each modulus + 1. There is also no need in storing
intermediate values in the algorithms of reconstruction
by the residues. In the general case, these values occupy
about N bits of memory.

Another feature of our implementation of modular
algorithms is that new moduli can be added dynami-
cally, as new input data become available, based on of
the estimates of possible size of the arithmetic opera-
tion result. In this situation, the list of intermediate val-
ues is updated, and all calculations performed by this
moment are repeated for the new modulus value. This
scheme of modular arithmetic programs operation
needs further development. Difficulties here are associ-
ated with the fact that it is rather difficult to estimate the
result size or compare two numbers on the basis of res-
idues and moduli values. The use of rough estimates
can lead to generating redundant moduli and perform-
ing unnecessary calculations.

7. CONCLUSIONS

Modular calculations are inherently parallelizable
(computations in each residue class can be performed
in parallel). The use of base-2 Cunningham numbers
makes it possible to exploit bit level parallelizm for
reductions, as well as for reconstruction algorithms.
Currently, we carry out the work on prototyping the
algorithms described above for the programmable logic
integrated circuits in VHDL.

We also investigate dynamic schemes of modular
calculations allowing one to discard individual moduli
if the new generated modulus is too large. This may
help to solve some problems with non-balanced sizes of
moduli of type 2+.

It is known that moduli can be chosen in such a way
that all intermediate values in reconstruction algo-
rithms are equal to ±1 [11]. For example, one can
choose mi = + 1. This not only results in
moduli that are not balanced in size, but also does not

allow us to avoid standard multiplication by mi in
reconstruction algorithms. From this point of view, the
choice of non-balanced moduli of type 2+ appears an
acceptable and practically useful compromise.

ACKNOWLEDGMENTS
The authors are grateful to Professor Stinson and

Professor Storjohann (University of Waterloo) for use-
ful discussions of preliminary materials of this paper, as
well as to Professor Shallit (University of Waterloo) for
providing reference to the work [4].

REFERENCES
1. Knuth, D.E., The Art of Computer Programming, vol. 2.
2. Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tucker-

man, B., and Wagstaff, S.S., Jr., Factorizations of bn + 1,
b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, 3rd Ed.
Contemporary Mathematics Series, vol. 22, Providence:
Am. Math. Soc., 2002.

3. Wagstaff, S., The Cunningham Project,
http://www.cerias.purdue.edu/homes/ssw/cun/index.html.

4. Cade, J.J., Kee-Wai, Lau, Pedersen, A., and Loss-
ers, O.P., Problem E3288. Problems and Solutions, The
Am. Math. Monthly, 1990, vol. 97, no. 4, pp. 344–345.

5. K ek, M., Luca, F., and Somer, L., 17 Lectures on Fer-
mat Numbers: From Number Theory to Geometry. New
York: Springer, 2001.

6. Solinas, J.A., Generalized Mersenne Numbers. Water-
loo: Faculty of Mathematics, Univ. of Waterloo, 1999.

7. Bernstein, D.J., Want Fast Bit Set/Extract, Message to
GMP Discussions List 〈gmp-discuss@swox.com〉. April
17, 2002.

8. Geddes, K.O., Czapor, S.R., and Labahn, G., Algorithms
for Computer Algebra (6th printing), Boston: Kluwer,
1992.

9. GNU MP 4.1, http://www.swox.com/gmp/manual/.
10. Stewart, A. and Zima, E., Base-2 Cunningham Numbers

in Modular Arithmetic, Technical Report, Wilfrid Lau-
rier Univ., January 2006.

11. Szabo, N.S. and Tanaka, R.I., Residue Arithmetic and Its
Applications to Computer Technology, McGraw-Hill,
1967.

12. Montgomery, P.L., Modular Multiplication Without
Trial Division, Math. Computation, 1985, vol. 44,
no. 170, pp. 519–521.

2a2i

m jj 1=
i 1–∏

riz

ˆ ˆ

´

