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Abstract. We present the history of indefinite summation starting with clas-
sics (Newton, Montmort, Taylor, Stirling, Euler, Boole, Jordan) followed by
modern classics (Abramov, Gosper, Karr) to the current implementation in
computer algebra system Maple. Along with historical presentation we de-
scribe several “acceleration techniques” of algorithms for indefinite summa-
tion which offer not only theoretical but also practical improvement in running
time. Implementations of these algorithms in Maple are compared to standard
Maple summation tools.
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1. Introduction

Let K be a field of characteristic zero, x – an independent variable, E – the shift
operator with respect to x, i.e., Ef(x) = f(x+ 1) for an arbitrary function f(x),
∆ = E − 1 – the difference operator with respect to x.

The problem of indefinite summation (anti-differencing) in general is: given a
closed form expression F (x) to find a closed form expression G(x), which satisfies
the first order linear difference equation

(E − 1)G(x) = F (x). (1)

If found, write G(x) =
∑

F (x)+c, where c is an arbitrary constant or any periodic
function of x with period 1. 1

The process of inverting the difference operator was called in classic literature
“integration” or “finite integration”:
“The operation of integration is therefore by definition the inverse of the operation
denoted by the symbol ∆. As such it may with perfect propriety be denoted by

This work is partially supported by NSERC.
1We will usually omit this constant term assuming it implicitly.
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the inverse form ∆−1. It is usual however to employ for this purpose a distinct
symbol, Σ, the origin of which, as well as of the term integration by which its office
is denoted, it will be proper to explain.” — George Boole (1860) [8]

Since Boole does not provide an attribution of this notation it is appropriate
to mention that notation Σ for indefinite summation was first introduced by Euler:
“Just as we used the symbol ∆ to signify a difference, so we use the symbol Σ to
indicate a sum.” — Leonard Euler (1755) [12]

The second related problem arises if G(x) solving (1) cannot be found. In
this case one can try to solve the additive decomposition problem: construct two
closed form expressions R(x) and H(x), such that

F (x) = (E − 1)R(x) +H(x), (1a)

where H(x) is simpler than F (x) in some sense (or as variation, as simple as
possible). An equivalent formulation of the additive decomposition problem is∑

x

F (x) = R(x) +
∑
x

H(x), (1b)

and R(x) is sometimes called the summable part of f(x) and H(x) – the non-
summable part.

If a closed form G(x) satisfying (1) exists one takes R(x) = G(x) and
H(x) = 0 as an answer to the additive decomposition problem. The measure
of simplicity can be different for different classes of functions. For example if F (x)
is a rational function over K one requires both R(x) and H(x) to be rational with
H(x) having the denominator of the lowest possible degree. We intentionally do
not define the notion of closed form expression here. When a particular class of
expressions is considered (such as polynomials, proper rational functions, quasi-
rational functions, hypergeometric terms), “closed form” will mean an expression
from the class under consideration. In this paper following [27] we call quasi-

rational function (resp. quasi-polynomial) a function of the form λx f(x)
g(x) (resp. of

the form λxf(x)), where f(x), g(x) ∈ K[x], λ ̸= 0, λ ̸= 1.
The history of indefinite summation naturally splits into “pre-computer al-

gebra” and “computer-algebra” periods. Indefinite summation plays in discrete
mathematics the same role as indefinite integration in calculus, and starts to grow
from the same roots. The problem was considered in classical works of Newton,
Bernoulli, Taylor, Nicole, Montmort, Stirling, Euler, Boole. Classics were con-
cerned with the methods to obtain solution of (1) and did not consider (1a).

The history of the algorithmic treatment of indefinite summation problem
oriented towards efficient implementation in computer algebra systems is also rel-
atively long. Starting with a classical series of works by Abramov opened by his
publication [1] (which gives not only a factorization-free algorithm for rational sum-
mation, but describes its Lisp implementation), works of Gosper [16, 17], Moenck
[29], and Karr [22], the subject is well understood and developed.

It is even more surprising that some of the simplest and most understood
algorithms for indefinite summation can still be improved, not only theoretically
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but also practically. We will give an overview of “basic” algorithms for indefinite
summation, and will offer immediate improvements to them. This includes algo-
rithms for (quasi-)polynomial and (quasi-)rational summation. Our “accelerated
instances” of the algorithms covered here are all based on relatively old and simple
ideas and can be generally described as “direct” algorithms, as opposed to “in-
direct” algorithms that for example involve reduction of the summation problem
(using variations of the method of undetermined coefficients) to linear algebra.
All our improvements are based on techniques used in computer algebra for years
(basis conversion [14, 10], compact representation [15, 9], various forms of partial
fraction decomposition [22, 24, 3], chains of recurrences [7, 41], etc.) We mention
only those directly related to the content of this paper. These techniques were
discovered, forgotten and rediscovered again, but still did not find their proper
place in implementation of computer algebra systems [18, 14].

The results of classics were neglected or rediscovered many times. One par-
ticular example is a number of papers on computing sums of the form

∑
x a

xxn

published in Fibonacci Quarterly over past decades in spite of the fact, that two
algorithms for finding such sums are published more than 150 years ago in Boole’s
“Treatise on the calculus of finite differences” [8].

The paper is organized as follows. In Section 2 we describe what was known
and used in pre-computer algebra era. Section 3 contains the history of recent 40
years of progress in indefinite summation (excluding hypergeometric summation)
and related topics. Section 4 describes our improvements to basic algorithms for
indefinite summation and provides some experimental results.

Note that we consider here only simple classes of summands. For example we
do not discuss hypergeometric summation here (only mention Gosper’s algorithm
several times when it is applied to simple summand). In our references to Karr’s
works we do not discuss general problem of summation in the so-called ΠΣ-fields,
but only refer to one of his basic algorithms for rational functions summation
described in [24]. Karr’s theory was recently generalized and streamlined in works
of Schneider (see for example [36, 37, 38]), but these developments are out of the
scope of this paper.

2. Works of classics

In this section we will try to describe how classics solve (1) using mainly books of
Boole [8], Euler [12], description of works of Nicole, Taylor and Montmort from [39],
and book of Jordan [19] which collect the the classic results on indefinite summa-
tion. The importance of operation of anti-differencing (a.k.a. indefinite summation,
a.k.a. finite integration) was obvious to the classics. All techniques described in
their work are immediately followed by examples of its use in applications.

One of the most important applications of the Calculus of Finite Differences
is to the finite summation of series.” — George Boole (1860) [8]
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Euler (after introducing summation in Chapter 1 of [12]), spends whole Chap-
ter 2 to demonstrate the use of indefinite summation in the theory of series.

There are two books which accumulate classic result on indefinite summation:
Boole’s (1860) [8] and Jordan’s (1939) [19]. Boole’s treatment of the problem is
most condensed and deserves in our opinion to be presented here. What follows in
different font is “almost” exact quotation from Boole’s book section on “Integrable
forms” (modulo small changes in notation, our footnotes and some shortcuts) 2.

1st Form. Factorial expressions of the form x(x− 1) . . . (x−m+ 1) = x(m). We have

∆x(m+1) = (m+ 1)x(m);

therefore Σx(m) =
x(m+1)

(m+ 1)
+ C.

Thus also, if u(x) = ax+ b, we have

Σu(x)u(x− 1) . . . u(x−m+ 1) =
u(x)u(x− 1) . . . u(x−m)

(m+ 1)a
+ C. (2)

2nd Form. Rational and integral function of x. 3

For, by Chap. II. Art. 5, any such function is reducible to a series of factorials of the
preceding form, each of which may be integrated separately. We find for Σu(x) the general
theorem

Σu(x) = C + u(0)x+∆u(0)
x(2)

1 · 2 + ∆2u(0)
x(3)

1 · 2 · 3 + &c. (3)

which terminates when u(x) is rational and integral. 4

It is obvious that a rational and integral function of x may also be integrated by
assuming for its integral a similar function of a degree higher by unity but with arbitrary
coefficients whose values are to be determined by the condition that the difference of the
assumed integral shall be equal to the function given.

3rd Form. Factorial expressions of the form

1

u(x)u(x+ 1) . . . u(x+m)
,

where u(x) is of the form ax+ b.
We have corresponding to the above form of u(x)

∆
1

u(x)u(x+ 1) . . . u(x+m− 1)
=

−am

u(x)u(x+ 1) . . . u(x+m)
.

Hence Σ
1

u(x)u(x+ 1) . . . u(x+m)
= − 1

am(u(x)u(x+ 1) . . . u(x+m− 1))
. (4)

It will be observed that there must be at least two factors in the denominator of the
expression to be integrated. No finite expression for Σ 1

ax+b
exists.

To the above form certain more general forms are reducible. Thus we can integrate any
rational fraction of the form

ϕ(x)

u(x)u(x+ 1) . . . u(x+m)
,

2This deserves to be presented here because of clear style and completeness of the content.
3This was commonly used term for polynomials in the 18th and 19th century.
4Here ∆ku(0) is the k-th difference of u(x) evaluated at 0.
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u(x) being of the form ax + b, and ϕ(x) a rational and integral function of x of a degree
lower by at least two unities than the degree of the denominator. For, expressing ϕ(x) in the
form

ϕ(x) = Au(x)+Bu(x)u(x+1)+Cu(x)u(x+1)u(x+2)+· · ·+Eu(x)u(x+1) · · ·u(x+m−2)

A, B ... being constants to be determined by equating coefficients, or by an obvious extension
of the theorem of Chap. II. Art. 5, we find

Σ
ϕ(x)

u(x)u(x+ 1) . . . u(x+m)
= AΣ

1

u(x+ 1)u(x+ 2) · · ·u(x+m)
+

+BΣ
1

u(x+ 2)u(x+ 3) · · ·u(x+m)
+ · · ·+ EΣ

1

u(x+m− 1)u(x+m)
, (5)

and each term can now be integrated by (4).
Again, supposing the numerator of a rational fraction to be of a degree less by at least

two unities than the denominator, but intermediate factors alone to be wanting in the latter
to give to it the factorial character above described, then, these factors being supplied to
both numerator and denominator, the fraction may be integrated as in the last case.

As all that is known of the integration of rational functions is virtually continued in the
two primary theorems of (2) and (4), it is desirable to express these in the simplest form.
Supposing then u(x) = ax+ b, let

u(x)u(x− 1) . . . u(x−m+ 1) = (ax+ b)(m),

1

u(x)u(x+ 1) . . . u(x+m− 1)
= (ax+ b)(−m),

then

Σ(ax+ b)(m) =
(ax+ b)(m+1)

a(m+ 1)
+ C, (6)

whether m be positive or negative. 5 The analogy of this result with the theorem∫
(ax+ b)m =

(ax+ b)m+1

a(m+ 1)
+ C,

is obvious.
4th Form. Functions of the form axϕ(x) in which ϕ(x) is rational and integral.
Since ∆ax = (a− 1)ax, we have

Σax =
ax

a− 1
+ C.

To deduce Σaxϕ(x) we may now employ either a method of integration by parts or a sym-
bolical method founded upon the relations between the exponential ax and the symbol ∆.

Applying integration by parts we have

Σaxϕ(x) =
1

a− 1
{ϕ(x)ax − aΣax∆ϕ(x)} . (7)

Thus the integration of axϕ(x) is made to depend upon that of ax∆ϕ(x); this again will
by the same method depend upon that of ax∆2ϕ(x), and so on. Hence ϕ(x) being by
hypothesis rational and integral, the process may be continued until the function under the

5Assuming m ̸= −1 of course
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sign Σ vanishes. This will happen after n + 1 operations if ϕ(x) be of the nth degree; and
the integral will be obtained in finite terms.6

But the symbolical method above referred to leads to the same result by a single
operation 7:

Σaxϕ(x) =
ax

a− 1

{
ϕ(x)− a

a− 1
∆ϕ(x) +

a2

(a− 1)2
∆2ϕ(x)− a3

(a− 1)3
∆3ϕ(x) + &c.

}
+C.

(8)
The series within the brackets stops at the nth difference of ϕ(x), supposing ϕ(x) of the
nth degree.

Several more historical comments are needed here.
The method of finding indefinite sum for polynomials is usually attributed

to Stirling. However, according to [39]:
”While engaged in a study of the Methodus Differentialis of Jas. Stirling (1730) I have
been struck by the fact that Nicole’s papers on the same subject, printed in the Memoires de
l’Academie Royale des Sciences (Paris), appear to form a fitting prelude to the work published
by Stirling. The dates of Nicole’s Papers are 1717, 1723, 1724, 1727, and it is almost certain
that Stirling was well acquainted with their contents...” After describing four works of
Nicole inspired by Brook Taylor (which give essentially the method of finite in-
tegration for polynomials and rational functions similar to one presented above),
Tweeddie concludes
“From the foregoing it seems natural to infer that Nicole was the first to introduce the In-
verse Factorial Series. His first Memoir bears the date 30th January 1717. In the Philosophical
Transactions for the months of July, August, and September 1717 (No. 353), there was pub-
lished a Memoir entitled De Seriebus Infinitis Tractatus. Pars Prima. Auctore Petro Remundo
de Monmort, R.S.S. Una cum Appendice et Additamento per D. Brook Taylor, R.S. Sec.

From this Memoir it is clear that both Montmort and Brook Taylor had at the same

time been busy with similar ideas.”

Montmort in particular shows how to find Σϕ(x)/(x+ n)...(x+ (p− 1)n) in
the same way as Nicole, i.e., by writing ϕ(x) in the form A0+A1x+A2x(x+n)+
. . . . He also shows how to sum Σ1/(x + a)(x + b)(x + c) . . . , where a, b, c . . . are
positive integers, by multiplying the numerator and denominator by the product
(x + a + 1)(x + a + 2) . . . (x + b − 1)(x + b + 1) . . . , etc., and then proceeding as
above.

He also gives an expansion of 1/(x+ a) in the form A/x+B/x(x+1)+ etc.,
commonly described as Stirling’s Series.

Tweedie continues:
Brook Taylor in his Appendix shows in a masterly manner how to deduce by his method of
Increments the conclusions obtained by Montmort.

In the summation of Σϕ(x)/(x + a)(x + b) . . . he points out that the degree of ϕ(x)
must be less by 2 than that of the denominator. He then represents the fraction ϕ(x)/(x +
a)(x+ b) . . . as a sum of partial fractions

A

x+ a
+

B

x+ b
+ . . . (9)

6This is essentially a very short description of recursive algorithm for summation of a quasi-
polynomial, in which we need to assume a ̸= 1.
7Details can be found in [8] on pages 52–53.
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where

A+B + · · · ≡ 0. (10)

As we already mentioned in Introduction, Euler devoted the first chapter of
his book [12] to the indefinite summation of polynomials and rational functions.
In particular he writes:

35.We should observe this method carefully, since sums of differences of this kind cannot
be found by the previous method. If the difference has a numerator or the denominator has
factors that do not form an arithmetic progression, then the safest method for finding sums
is to express the fraction as the sum of partial fractions. Although we may not be able to find
the sum of an individual fraction, it may be possible to consider them in pairs. We have only
to see whether it may be possible to use the formula

Σ
1

x+ (n+ 1)ω
− Σ

1

x+ nω
=

1

x+ nω
. (11)

Although neither of these sums is known, still their difference is known.

36. In these cases the problem is reduced to finding the partial fractions, and this is

treated at length in a previous book. 8

He then gives several examples of summation, one of them being (in modern
notation)

Σ
3

x(x+ 3)
= Σ

1

x
− Σ

1

x+ 3
= Σ

1

x+ 1
− Σ

1

x+ 3
− 1

x
=

= Σ
1

x+ 2
− Σ

1

x+ 3
− 1

x
− 1

x+ 1
= − 1

x
− 1

x+ 1
− 1

x+ 2
.

We note here that Euler’s examples are always instructive, and one can easily
extend them to more complicated summands, using relations similar to (11) such
as

Σ
ax+1

x+ 1
− Σ

ax

x
=

ax

x
,

or

Σ
x+ 1

x3 + 3x2 + 4x+ 3
− Σ

x

x3 + x+ 1
=

x

x3 + x+ 1
.

The last reference in this section is to the book of Jordan [19]. According to
[29] “Jordan’s book is more like a cookbook of approaches, rather than a rigorous
algorithmic treatment...” and we disagree with this characteristic. Jordan’s book
provides even more details on the summation of rational functions than Boole’s
book.

8Here ω is an increment of independent variable x and can be replaced by 1.
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3. Computer algebra era

Polynomials and quasi-polynomials are always summable. Computer algebra sys-
tems implementations of indefinite sums for polynomials and quasi-polynomials
essentially adopted classic results without change (see for example [29]). One ex-
clusion is probably a description of quasi-polynomial summation in [27], which sets
up a triangular system of linear equations to find the coefficients of the result.

Intrigue starts with summation of rational functions. Summarizing above,
pre-computer algebra classics had no problems with indefinite summation of ra-
tional functions provided the denominator is a product of linear factors. However,
because of lack of efficient factorization algorithms, early computer algebra devel-
opment was solving the problem in factorization-free manner.

Let F = f/g ∈ K(x), with f, g ∈ K[x] \ {0} coprime. Using division with
remainder to split off the polynomial part, which can be summed with no problems,
we may assume that deg f < deg g = n, so that F is proper.

The notion of dispersion plays a crucial role in the development of modern
algorithms for indefinite summation. First introduced by Abramov in his classical
work [1] as the maximal integer distance between roots of the denominator g of a
reduced rational function F = f/g ∈ K(x), it has since been a key notion in several
algorithmic developments. We denote dispersion of the input by ρ. Consider

∑
x F .

If ρ = 0 then we take R = 0 and H = F in (1a), see [1, 3]. In fact, the condition
that the denominator of H has minimal degree is equivalent to the dispersion of H
being zero. Now, let ρ > 0. One technical difficulty (which makes indefinite rational
summation different from indefinite rational integration) is that the degree of the
denominator of the indefinite sum can be proportional to ρ, whose value in turn
can be exponentially large in the bit size of the summand.

For instance, if F (x) = 1
x2+ρx , (with ρ natural number) then the solution (up

to an additive constant) of the rational summation problem (1) is

G(x) = −1

ρ

(
1

x
+

1

x+ 1
+ · · ·+ 1

x+ ρ− 1

)
,

whose numerator and denominator have degrees linear in ρ, and coefficients of
bit-size linear in ρ.

We distinguish two kinds of dependency of the running time of a summation
algorithm on dispersion ρ in cases when ρ is large:

• essential (non-removable) dependency, when an algorithm is at least linear
in ρϵ for some positive ϵ ≤ 1 and the expanded output has size also linear in
ρϵ;

• non-essential (potentially removable) dependency, when an algorithm is at
least linear in ρϵ, but the expanded output has size polynomial in the input
size.

The essential dependency is a feature of the summation problem (output happens
to be exponentially large in the input size) and non-essential dependency is a
feature of some particular algorithm (output is small but the algorithm exhibits
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exponentially large intermediate expressions). Many of existing algorithms exhibit
non-essential dependency of the running time on ρ which makes them unnecessarily
slow for the cases of large ρ and small output size.

The history of progress in “modern” rational summation can be split in 3
periods with unusual gaps in between. The first algorithms were “unknown” for a
decade to the computer algebra community at large. Activity in this research was
largely driven by the needs in computer algebra systems development: indefinite
summation of rational functions (or more generally – finding solutions of linear
difference equations with polynomial coefficients) forms the basis for more ad-
vanced summation techniques [22]. The situation here is parallel to the situation
in symbolic integration.

Consider two popular problems associated with the indefinite rational sum-
mation (as in [34]):
P1: For a given proper rational function F (x) find a pair of rational functions
R(x) and H(x), satisfying (1a) with H(x) having denominator of minimal possi-
ble degree.
P2: For a given proper rational function F (x) find a solution of problem P1 with
minimal possible degree of the denominator of the summable part R(x), provided
that H(x) ̸= 0, i.e., F (x) is not rational summable.

For illustration purposes we will compare behavior of different algorithms on
two examples: ∑

x

−2x+ 999

(x+ 1) (x− 999)x (x− 1000)
=

1

x (x− 1000)
, (12)

∑
x

x3 − 1998x2 + 996999x+ 999999

(x+ 1) (x− 999)x (x− 1000)
=

1

x (x− 1000)
+

∑
x

1

x
. (13)

The dispersion of the summand in both of these examples is 1001.

3.1. Modern Classics

In his classical work [1] Sergei Abramov first introduced the notion of dispersion,
and described an algorithm for rational indefinite summation. The algorithm was
implemented in Lisp and used author’s own polynomial arithmetic package. He
later provided an algorithm to solve problem P1 [2]. This result was somehow
unknown for some period of time. Even in 1993 some authors state (see [25]) “At
first glance, this improvement might seem to be of minor interest since Gosper’s
algorithm is not primarily intended for the special case of rational summation. But
we have to stress that in many computer algebra systems it is the only summation
algorithm available.”

It is worthwhile to mention here the work of Moenck [29] in which he tries
to generalize (5) to the case of denominators with factors of arbitrary degree.
Moenck’s algorithm was used in Maple for some period of time until some serious
flaw was discovered in it (see [32]).

Abramov’s work becomes popular and widely adopted by computer algebra
systems two decades later.



10 Eugene V. Zima

During the decade of 1990s there were a number of algorithms and improve-
ments developed, see for example [3, 27, 30, 32, 33, 40, 26]. In particular [32] gives
a complete overview of these algorithms and improvements to them. All these al-
gorithms carefully avoid factorization in K[x] and fall into one of the following two
categories.

• Iterative (Hermite reduction analogous) algorithms will start with R = 0 and
H = F and decrease the dispersion of H by one at each iteration, reducing
the non-rational part H and growing the rational part R. The number of
iterations is equal to ρ, see [2].

• Linear algebra based (Ostrogradsky analogous) algorithms first build univer-
sal denominators u and v such that the denominator of R will divide u and
the denominator of H will divide v. Then, the problem is reduced to solving
a system of linear equations with size deg u + deg v, see [30, 3, 32]. Since
deg u ≥ ρ the choice of u of the lowest possible degree is obviously crucial
here. The idea to build an universal denominator here is essentially the same
as multiplying the numerator and denominator of the summand by missing
factors in Boole’s description above.

In both classes of algorithms if ρ ≫ deg g the cost of rational function sum-
mation depends on the value of ρ.

Consider examples (12) and (13). On the one hand, iterative algorithms will
require about 1000 steps of polynomial gcd computations. On the other hand,
the universal denominator constructed by the linear algebra based algorithms will
have degree about 1000. In general, ρ may be as large as the magnitude of the
trailing coefficient of g. Thus, the cost of the iterative and linear algebra based
algorithms for computing a decomposition as in (1a) may be exponential in the
size of the input.

Note here that Euler would not have problems with (12). After computing
the partial fraction decomposition of the summand:

1

1000(x− 999)
− 1

1000 (x− 1000)
+

1

1000x
− 1

1000 (x+ 1)
,

and applying (11) to the first and the second pair of fractions, one obtains

1

1000 (x− 1000)
− 1

1000x
.

This would probably take him less time manually than-computer based factorization-
free implementation in early computer algebra systems.

3.2. Gosper’s algorithm

In [17] Gosper described decision procedure for summability of hypergeometric
term that can be used (and was used indeed according to [25]) to solve (1). Ob-
serve that it does not solve either of problems P1 or P2 when the input is not
rational summable. That is, the algorithm is not applicable to the example shown
in (13) since H = 1/x ̸= 0. Another serious drawback is that Gosper’s algorithm
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starts with computing of the so called Gosper form of f(x+ 1)g(x)/g(x+ 1)f(x),
and the cost of this step alone is proportional to the dispersion of the input. For
example, Gosper form of the certificate of summand from (12) involves a polyno-
mial of degree 999. After this form is computed Gosper’s algorithm will look for
a polynomial solution of the first-order difference equation with right-hand side
being polynomial of degree about 1000, and use this solution and the right-hand
side to write down the numerator and denominator of the indefinite sum, which
have a huge common factor. It is obvious that this dependency of the running
time of Gosper’s algorithm on dispersion of the input is potentially removable (as
output in (12) is small).

In the 1990s, a lot of effort was expended to improve the behavior of Gosper’s
algorithm on rational input. This led in particular to the introduction of the notion
of Greatest Factorial Factorization [30], which plays an important role in computer
algebra applications nowadays.

In spite of all improvements in Gosper’s algorithm [25, 26, 30], the first step is
still computing the Gosper-Petkovšek form with running time proportional to the
dispersion ρ of the denominator g(x). The only exception seems to be [40], which,
when applied to rational summation, avoids computing the Gosper-Petkovšek form
and solving the linear system corresponding to Gosper equation. However, as far
as we can tell, this algorithm still involves a loop with ρ iterations, i.e., exhibits
non-essential dependency of running time on the dispersion of the input.

3.3. Direct algorithms

Direct algorithms for indefinite summation of rational functions are based on par-
tial fraction decomposition, compact representation of the result up to the very
last step, and fast minimization of degree of the denominator in the summable
part.

Following [30] we call two polynomials u(x), v(x) ∈ K[x] shift equivalent if
there exists h ∈ Z, such that u(x+h) = v(x). It is clear that a set of distinct shift
equivalent polynomials u1(x), . . . , um(x) has a smallest element – a polynomial
v(x) such that all other polynomials are the result of a non-negative integer shift
of v(x), i.e., ui = v(x+ hi) = Ehiv(x), where hi ≥ 0, hi ∈ Z, i = 1, . . . ,m.

Different forms of partial fraction decomposition of rational summand were
considered in relation to the problems of indefinite rational summation. The three
most popular forms can be expressed generally as follows. Any given proper re-
duced rational function f(x)/g(x) (f(x), g(x) ∈ K[x]) can be uniquely represented
as

f(x)

g(x)
=

v∑
i=1

mi∑
j=1

nij∑
k=0

fijk

Ekgji
, (14)

where:
(i) gi are monic distinct factors, irreducible over K , or
(ii) gi are monic distinct factors, irreducible over K, or
(iii) gi are monic distinct factors, shiftless over K.
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Here v is the number of different shift equivalence classes (components) in the
denominator of the summand; mi is the highest multiplicity of a factor in class i;
nij – the largest shift of a factor of multiplicity j in class i. All polynomials fijk
have deg fijk < deg gi. This means in particular that in case (i) deg fijk = 0 and

fijk ∈ K.
For the simplicity of description of the direct algorithm, (14) can be rewritten

in the form
f(x)

g(x)
=

v∑
i=1

mi∑
j=1

Mij(E)
1

gji
, (15)

where Mij(E) is a linear difference operator with coefficients in K or in K[x]. This

representation is unique in each of the cases (i) – (iii). If f(x)
g(x) is summable, the

summable part R(x) can be also uniquely written in a form analogous to (15):

v∑
i=1

mi∑
j=1

Lij(E)
1

gji
, (16)

and therefore

(E − 1)Lij(E) = Mij(E), (17)

i.e., every operator Mij(E) in (15) is left-divisible by E−1. Let Mij(E) = apE
p+

ap−1E
p−1 + . . .+ a1E + a0. Then the remainder from the left division of Mij(E)

by E − 1 is simply

rij = E−pap + E−(p−1)ap−1 + . . .+ E−1a1 + a0. (18)

The summability criterion states that the polynomials rij in (18) must be iden-
tically equal to zero for all i, j in order for the input rational function to be
summable.

Observe that
(i) requires factorization of the denominator into linear factors,
(ii) requires factorization in K[x] but does not require computation of the disper-
sion of the denominators, and
(iii) does not require factorization in K[x] but does require the knowledge of the
so-called dispersion set (the set of all integer distances between the roots of the
denominator).

The first description of direct rational summation algorithm is due to Karr
[21] (see also popular survey of Lafon [24], where above-mentioned summability
criterion is formulated explicitly with proper reference to Karr’s work). Because
– at that time – factorization was considered time-consuming it was effectively
forgotten, and factorization-free (gcd-based) algorithms were used in computer
algebra systems for years. Note here that this criterion (known in the form (10) to
classics, and given in the form rij = 0 with rij from (18) here and in Karr’s work)
was “rediscovered” again in 2000 (see in [28]).

Decomposition (i) was used in [3] to establish a summability criterion and
to describe the structure of a universal denominator. This criterion is the same as
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(10) since a linear difference operator with constant coefficients is left-divisible by
E − 1 if and only if the sum of coefficients is equal to 0. This is also equivalent to
the classical condition of summability which is that the degree of the numerator
is at least 2 less than the degree of the denominator.

Later the direct algorithm based on (i) was prototyped in Maple (see [11]).
Note here that because of the way Maple represents full partial fraction decom-
position (using notation of the sum over roots of irreducible polynomials) the
prototype essentially worked with representation of summand (ii).

Representation (iii) with a fast algorithm to compute dispersion set was used
in [15]. It provided the first polynomial time rational function summability test,
and avoided any intermediate expression swell. If the output is exponentially large
in the input size, the only part of the algorithm that exponentially depends on
the input size is writing the result in expanded form. This was the first rational
indefinite summation algorithm with only essential dependency of the running
time on dispersion of the input for the case of summable input.

However, when the input is not summable this algorithm can still exhibit
non-essential dependency of the running time on ρ. The reason is that in this case
the problem of additive decomposition has infinitely many solutions with different
non-summable parts. Consider a simple example from [34] (Example 1). Here is a
solution to additive decomposition problem∑

x

x2 − 100

x (x+ 1) (x+ 100)
=

2

x
+

1

x+ 1
+ · · ·+ 1

x+ 99
+

∑
x

1

x
, (19)

with the denominator of non-summable part of smallest possible degree. This is
the form of the output that is returned by the algorithm from [15]. However, the
same summation problem has another additive decomposition∑

x

x2 − 100

x (x+ 1) (x+ 100)
=

1

x
+

∑
x

1

x+ 100
. (20)

The difference of these decompositions is that the degree of the denominator of
the summable part in (20) is minimal among all decompositions with denominator
of the non-summable part of degree 1.

The problem of minimization of the denominator of the summable part was
partially solved in [31], and [34] gives a complete solution. However it suffered from
two major drawbacks:
- as a preliminary step it uses the classical algorithm from [3], which exhibits
non-essential dependency of the running time on the dispersion of the input (ap-
parently the author was unaware of [15]);
- the output of this preliminary step is “massaged” and transformed into the min-
imal form, however the size of the input of this step can already be exponential in
the size of F (x) even if the resulting minimal form is small.
This means that both steps of the algorithm from [34] exhibit non-essential de-
pendency of the running time on the dispersion of the input, because in order
to produce the minimal possible output (as in the right-hand side of (20)) the
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algorithm first builds the right-hand side of (19), and then post-processes it. The
solution to the problem that is linear in the minimal possible output size was
given in [44] (see also [43]). In [35] the author rediscovers Karr’s rational summa-
tion algorithm [21] and gives its modification that minimizes the denominator of
non-summable part in the case when input is non-summable without referring to
Karr’s works or at least to Lafon’s survey [24].

It was finally shown in [43] that in the cases when the input is not summable,
the choice of answer with minimal degree of the denominator of the summable part
can be can be performed in no more than n steps.

4. Direct indefinite summation in practice

As far as we can judge, design and implementation of the indefinite summation
algorithms in the computer algebra system Maple follows the pattern laid out
in [6] (see Section 2.3 there). Although the flow chart looks reasonable, it has
several flaws both in the design and in the implementation. Our main criticism
is that Maple tries to apply the general hypergeometric treatment (Gosper’s [17]
or Abramov-Petkovšek’s [5] algorithms) to the summand once it detects that the
summand is not polynomial, quasi-polynomial or rational. There is a wide class
of summation problems with quasi-rational summands that deserve specialized
treatment. Theoretically Gosper’s algorithm can be used for indefinite summation
of polynomials and quasi-polynomials also, and it will succeed. It is a noble idea
to have one algorithm for all problems, but for example Gosper’s algorithm is not
necessarily a good choice even to be applied to a rational summand, as it was
shown many times (see, for example [15, 42]).

Example 1. Consider the following two summation problems:∑
x

T (x) =
5x

(x+ 1)(x+ 200)
, (21)

where T (x) =
2(2x2 + 401x+ 299)5x

(x+ 1)(x+ 2)(x+ 200)(x+ 201)
and

∑
x

(
9x4 + 1434x3 + 70075x2 + 1017440x− 252800

)
5x

(x+ 40) (x+ 80) (x+ 79) (x+ 1)x
= (22)

5x (2x+ 79)

(x+ 79)x
+
∑
x

5x

x+ 40

For the sum (21) the Gosper-Petkovšek form of the certificate of the summand
consists of polynomials Q(x) = 5(x+ 1), R(x) = x+ 202 and
P (x) =

(
x2 + 401

2 x+ 299
2

)
(x+ 199) (x+ 198) · · · (x+ 3).

This last polynomial has degree one less than the dispersion of the input (199 in
this case), and is saturated. After finding a polynomial solution U(x) (with degree
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bound 199) of the Gosper equation

Q(x)U(x+ 1)−R(x− 1)U(x) = P (x),

one forms the final result as

Q(x− 1)U(x)

P (x)
T (x) =

5x

(x+ 1) (x+ 200)
,

and most of the terms of P (x) and U(x) cancel.
For the sum (22) Gosper’s algorithm will not return any answer (since the

input is non-summable), so the general additive decomposition method from [5]
is used. It is worthwhile to mention that this algorithm uses a number of steps
at least linear in the dispersion of the input (which is 80 in this particular case),
and returns the result, whose summable part has the numerator of degree 40, the
denominator of degree 41, and the non-summable part is∑

x

9094947017729282379150390625
5x

x+ 80
.

Unlike traditional algorithms, our direct algorithms are based on a change of
representation of the summand.

4.1. Polynomials and quasi-polynomials

In the calculus of finite differences it is always advantageous to express polynomials
by Newton’s formula. – Charles Jordan (1939)

In case of indefinite summation of (quasi-)polynomials special representation
means just change of basis. The change from monomial basis to the falling factorial
basis is a common place in many sources to provide algorithms for polynomial sum-
mation, that involves either computation of Stirling numbers, or Bernoulli poly-
nomials (see for example [24, 13]). However, the binomial basis

(
x
i

)
, i = 0, 1, . . . , n

happens to be the most suitable in this context. Indeed, assume all polynomials
are given in the binomial basis, i.e., a polynomial Pn(x) of degree n is represented
by a list φ0, φ1, . . . , φn ∈ K such that

[φ0, φ1, . . . , φn](x) = φ0

(
x

0

)
+ φ1

(
x

1

)
+ . . .+ φn

(
x

n

)
(23)

(We will further omit mentioning explicit dependency of l.h.s. of x since most of
the time the independent variable x is implicitly assumed.)

Addition, subtraction and multiplication by a constant in binomial basis are
componentwise (similarly to the monomial basis). Note that φ0, φ1, . . . , φn in (23)
are just finite forward differences (elements of the Newton series, or pure-plus
chains of recurrences) of Pn(x) taken at x = 0 with step 1 [7, 41]. Recall from [41]
(or obtain in an elementary manner from the Pascal triangle definition) that

E[φ0, φ1, . . . , φn] = [φ0 + φ1, φ1 + φ2, . . . , φn−1 + φn, φn]

(E − 1)[φ0, φ1, . . . , φn] = [φ1, φ2, . . . , φn]∑
x

[φ1, φ2 . . . , φn] = [φ0, φ1, φ2, . . . , φn]
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for an arbitrary constant φ0. This suggests a constant time indefinite summation
algorithm in binomial basis, which can be expressed in Maple (assuming that
input polynomial is represented by the list of coefficients in binomial basis and
summation variable is implicit) as:

poly_sum := y->[0,op(y)];

This is probably the shortest and fastest algorithm for indefinite summation, and it
is not surprising that it was known long before the first computer algebra system
was even prototyped (see the example on page 103 of [20], which is the third
edition of the original book published in 1939). However we are not aware of any
implementation of this algorithm in a computer algebra system. Although, even
for manual manipulation of the problem the formula∑

x

(
x

m

)
=

(
x

m+ 1

)
+ C is better than the popular

∑
x

x(m) =
x(m+1)

(m+ 1)
+ C.

Just compare the right-hand sides to see how to save 6 symbols in the output. Note
that in more general context the binomial basis was used in [4] where it is shown
why the binomial basis is the basis of choice when solving linear difference equa-
tions with polynomial coefficients. However Maple standard summation routines
ignore this fact.

If input is given in monomial basis, then the running time of summation is
dominated by the time to convert the input to binomial basis and back. Note that
the current algorithm for polynomial summation in Maple uses a formula based
on Bernoulli polynomials and its complexity is at least quadratic in the degree of
the summand.

Representation of polynomials in binomial basis is especially appealing, be-
cause it can be used as a standard dense representation for polynomials. A lengthy
chain of computations involving ring operations, (nested) indefinite summation,
differencing, etc. can be performed in this basis from the beginning. If output in
standard basis is required, conversion may be performed when necessary. On one
hand, all ring operations have the same asymptotic time complexity in both bases
(see [14]). On the other hand, operations of differencing and indefinite summation
have time complexity bounded by a constant (the best one can hope for), and shift
is performed in linear time.

We strongly agree with the old comment of Jordan on importance of New-
ton’s formula for the statistician:
This is not yet sufficiently recognized, since nearly always the statistician expands
his polynomial in power series in spite of the fact that he is generally concerned
with the differences and sums of his functions, so that he is obliged to calculate
these quantities laboriously. In Newton’s expansion they would be given immedi-
ately. (see [19])
This is especially true for Maple, because, for example, Newton interpolation rou-
tines return the resulting interpolating polynomial effectively in Newton form.
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Consider now a quasi-polynomial with polynomial part represented in bino-
mial basis:

q(x) = λx[φ0, φ1, . . . , φn],

where λ ̸= 1, λ ̸= 0. It is well known (see for example [27]) that the indefinite sum
of q(x) has polynomial part of the same degree n, i.e.:∑

x

q(x) = r(x) = λx[ξ0, ξ1, . . . , ξn]. (24)

Now,

Er(x) = λx+1[ξ0 + ξ1, ξ1 + ξ2, . . . , ξn−1 + ξn, ξn] =

λx[λξ0 + λξ1, . . . , λξn−1 + λξn, λξn],

(E − 1)r(x) = λx[(λ− 1)ξ0 + λξ1, . . . , (λ− 1)ξn−1 + λξn, (λ− 1)ξn],

and application of the operator (E − 1) to l.h.s. and r.h.s. of (24) gives

[φ0, φ1, . . . , φn] = [(λ− 1)ξ0 + λξ1, . . . , (λ− 1)ξn−1 + λξn, (λ− 1)ξn],

i.e., the coefficients of the polynomial part of the indefinite sum can be computed
as

ξn =
φn

λ− 1
, ξi =

φi − λξi+1

λ− 1
, i = n− 1, n− 2, . . . , 0.

This gives a linear time algorithm for indefinite summation of quasi-polynomials.

If the input is given in the monomial basis, then the running time of sum-
mation is again dominated by the time to convert the input to binomial basis and
back. The current implementation in Maple is at least quadratic in the degree of
polynomial part of the summand (see Subsection 4.3 for a comparison of timings).

4.2. Rational and quasi-rational functions

The safest method for finding sums is to express the fraction as the sum of partial
fractions. Although we may not be able to find the sum of an individual fraction,
it may be possible to consider them in pairs. — Leonard Euler (1742)

As a piece of computer algebra folklore we mention here that, to our knowl-
edge, one of the most popular computer algebra systems has never used factorization-
free algorithms for the rational summation. It always proceeded with partial frac-
tion decomposition and used variations of Euler’s simplification (11).

Contrary to this, Maple system for a long time had an obsession with factorization-
free implementations of rational indefinite summation. In some versions of Maple
this obsession has led to anecdotal situations. For example, Maple summation rou-
tine would compute the dispersion set of the denominator of the input summand
using factorization, and then “forget” about the fact that the denominator was
already factored to run factorization-free implementation of Abramov’s algorithm,
that requires dispersion set as the input.
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Recall that F = f/g ∈ K(x), with f, g ∈ K[x] \ {0} coprime and deg f <
deg g = n. Direct algorithms for indefinite summation of rational and quasi-
rational functions are based on partial fraction decomposition, compact repre-
sentation of the result up to the very last step, and fast minimization of degree
of the denominator in the summable part. We show that in cases when the input
is not summable, the choice of answer with minimal degree of the denominator of
the summable part can be performed in a number of steps bounded by n.

Even though the direct algorithm for rational indefinite summation was de-
scribed in many sources, we give a brief sketch here, using synthetic division ar-
guments (as in (17)). Synthetic division provides a clear, undistorted explanation
of the structure of both the summable and the non-summable parts, and it is
worth considering since it is hidden (implicit) in both – the original works of Karr
[21, 22, 23], and in [35]. Since the size of the output depends on the sparsity of the
left quotient, and in order to describe the sparsity of a linear difference operator,
we define the support of an operator L = am(x)Em + · · · + a1(x)E + a0(x) as
S(L) = {i|0 ≤ i ≤ m, ai(x) ̸= 0} (set of indices of monomials that appear with
non-zero coefficients).

The algorithm proceeds as follows.

1. Starting with f(x)/g(x) (f(x), g(x) ∈ K[x]) compute partial fraction decompo-
sition (ii) in form (15). Note that further processing can be performed indepen-
dently (see for example [34]) in each shift-equivalence class of denominator g(x).
Let’s concentrate on a single shift equivalence class (further, index i is fixed and
thus omitted for simplicity):

m∑
j=1

Mj
1

gj
, (25)

2. Compute remainders rj as in (18) and left quotients Lj in sparse form (recall
that coefficients of the left quotient are just partial sums obtained when computing
the remainder).

3. If all polynomials rj are zero, there is nothing to do; return the answer in sparse
form

∑m
j=1 Lj

1
gj . The size of the result (the degree of the denominator of the

summable part) in this case is:
m deg(g) · |S(Lm)|+
(m− 1) deg(g) · |S(Lm−1)\S(Lm)|+
(m− 2) deg(g) · |S(Lm−2)\S(Lm−1)\S(Lm)|+ . . .
· · ·+ 1 · deg(g) · |S(L1)\

∪m
k=2 S(Lk)|.

4. If at least one polynomial rj is non zero, the input is not rational summa-
ble and one needs to find remainder in the form r(x + c)Ec, 0 ≤ c ≤ maxi(nij)
which minimizes the denominator of the summable part, keeping dispersion of the
non-summable part equal to 0. This is trivial when the shift-equivalence class is
represented by a single operator (has terms of the same multiplicity in partial
fraction decomposition above). In this case one seeks the sparsest left quotient Lc
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(quotient with minimal support) in

M = (E − 1)Lc + r(x+ c)Ec, 0 ≤ c ≤ degE(M),

and

min
0≤c≤degE(M)

|S(Lc)| = min
c∈S(M)

|S(Lc)|.

Recall that when the dispersion of the input is large, degE(M) can be as large as
the dispersion, but M has at most deg(g) nonzero terms, so |S(M)| ≤ deg(g), and
the smallest summable part can be found, in this case, in a number of steps which
is linear in the degree of the denominator (by scanning sparse representation of
the left quotient from step 2 right-to-left).
When the shift-equivalence class is represented by several operators∑

x

m∑
j=1

Mj
1

gj
=

m∑
j=1

Lj
1

gj
+
∑
x

m∑
j=1

rj
gj

one looks for remainders in the form rj(x + c)Ec (with the same c for all of
them to keep dispersion of the non-summable part equal to 0) which minimizes
degree of the denominator of the summable part. Let k = max{j|rj ̸= 0}. It is
easy to show that the minimum is achieved at c ∈ S(Mk). This means that the
smallest summable part can be computed in the number of steps bounded by the
degree of the denominator of the input (the details are given in [44] with several
optimizations and description of a data structure similar to priority queue used
to achieve linear time complexity of this last step). Note that algorithm in [35]
requires a number of steps quadratic in the degree of the denominator in this step.
Remark. We used decomposition (ii) here, because decomposition (iii) (although
superior in the case of summable input) may not guarantee minimality of the
summable part for non-summable input. The following example is due to Jürgen
Gerhard. Consider an input converted to the form (iii)(

(1− x2)E100 − E99 + E − (x2 + 2)
) 1

x4 + x2
.

It is non-summable and any choice of the remainder will give dense quotients
(denominator of the summable part will have degree 400). However, after factoring
the denominator into x2(x2 + 1), the summand becomes

(E − 1)(E99 + 1)

(
1

x2
− 1

x2 + 1

)
− 1

x2
− E100 1

x2 + 1
,

and the denominator of the summable part has degree 8. This suggests a combi-
nation: decomposition (iii) can be used in steps 1-3, and in those shift equivalence
classes which contain nonzero remainders, denominators are further factored.

The treatment of indefinite quasi-rational sums∑
x

λx f(x)

g(x)
, f(x), g(x) ∈ K[x], λ ̸= 0, λ ̸= 1,
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is very similar. We first represent
f(x)

g(x)
in the form (15)

f(x)

g(x)
=

v∑
i=1

mi∑
j=1

Mij(E)
1

gji
,

and then substitute E/λ for E in each operator Mij . This gives representation of
quasi-rational input in the form

λx f(x)

g(x)
=

v∑
i=1

mi∑
j=1

M ′
ij(E)

λx

gji
,

and this input is summable if and only if every operator M ′
ij(E) = Mij(E/λ) is

left-divisible by (E − 1). The search for minimal summable part in case of non-
summable input is the same as in the sketch of rational summation algorithm
above.

4.3. Experiments

Polynomials
We are unaware of any implementation of fast basis conversion in Maple,

and also were unable to obtain NTL implementation from authors of [10]. How-
ever Figure 4 in [10] gives a good idea of possible speedup of indefinite summation
of polynomials. It compares timings of fast basis conversion with the naive basis
conversion (which is essentially the time for basis conversion in our old implemen-
tation).

In order to show the potential gain from working with polynomials in the
binomial basis, we compare timings in Maple to evaluate the following expression

V (x) =
∑
x

(
∑
x

P1 + (
∑
x

P2 + P1))

with random polynomials P1, P2
9. The timing comparison is presented in Table

1. Note that for basis conversion we use our ancient implementation [7] of chains
of recurrences which is quadratic in the degree of the polynomials. According to

n Maple Prototype incl. Basis_conv

100 0.031 0.016 <0.016
200 0.140 0.047 0.031
400 0.578 0.312 0.272
800 4.617 1.794 1.698
1600 33.088 12.558 11.912

Table 1. Timings in seconds for V (x)

the results in [10], the last column (in this range of degrees) can be reduced by a
factor between 2 and 6 if fast basis conversion is used.

9All random polynomials in our experiments have integer coefficients between -99 and 99.
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Quasi-polynomials
The comparison (especially in the case of quasi-polynomials, and quasi-poly-

nomials whose coefficients depend on λ) is very favorable fir the direct algorithms.
The following tables compare timings for summation of quasi-polynomials with
random polynomial part performed by Maple 16 using SumTools[Indefinite],
SumTools[Hypergeometric] and our prototype. For the first and the second ta-
bles random dense polynomials Pn(x) of degree n were generated, for the third
table random dense polynomials in Pn(x, λ) of degree n were used. A dash in
the table indicates that Maple 16 did not return a result after 1000 seconds, and
“Err” indicates that Maple 16 returned an error. Most of the time reported by
our prototype was spent in basis conversion. As soon as fast basis conversion is
implemented in Maple, these timings will improve tremendously (see Figure 4 in
[10]).

n Indefinite Hypergeometric Quasi_Poly

20 0.031 0.078 <0.016
40 0.156 0.078 <0.016
80 1.264 0.234 0.016
160 14.805 1.202 0.016
320 40.888 4.883 0.156

Table 2. Timings in seconds for 5xPn(x)

n Indefinite Hypergeometric Quasi_Poly

20 0.078 0.484 <0.016
40 0.796 7.893 <0.016
80 9.516 442.965 0.016
160 81.105 – 0.031
320 Err – 0.218

Table 3. Timings in seconds for λxPn(x)

n Indefinite Hypergeometric Quasi_Poly

20 0.109 0.687 <0.016
40 0.967 7.941 0.031
80 12.246 415.322 0.124
160 101.478 – 1.139
320 290.208 – 10.156

Table 4. Timings in seconds λxPn(x, λ)

Quasi-rational functions
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Example (21) takes 0.031 seconds with our implementation, 0.889 with
SumTools[IndefiniteSum][Indefinite] in Maple 16, and 0.265 seconds with
SumTools[Hypergeometric][SumDecomposition]. Example (22) takes 0.031 sec-
onds with our implementation and provides minimal degree of the denominator
of the summable part, 0.437 with SumTools[IndefiniteSum][Indefinite] in
Maple 16, and 0.390 seconds with
SumTools[Hypergeometric][SumDecomposition] and returns summable part with
the denominator of degree 41 with standard Maple implementation.

Note that these examples have relatively small value of the dispersion. The
speedup can be made arbitrarily large, by increasing the value of the dispersion.
For instance, the sum∑

x

(
8x3 + 12006x2 + 4005998x− 1001000

)
5x

x4 + 2002x3 + 1003001x2 + 1001000x

is evaluated to

2
5x (x+ 500)

x (x+ 1000)

in 0.047 seconds by our code, and in 6.849 seconds by
SumTools[Hypergeometric][SumDecomposition].
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1994/21 of Prépubl. Inst. Rech. Math. Av., pages 95–101. Univ. Louis Pasteur,
Strasbourg, 1994.

[32] R. Pirastu. On combinatorial identities: symbolic summation and umbral calculus.
PhD thesis, Johannes Kepler Universität, Linz, Austria, 1996.

[33] R. Pirastu and V. Strehl. Rational summation and Gosper-Petkovšek representa-
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