
Lecture 2 C Basics

1. C program structure
2. Syntax
3. Data types
4. Variables
5. Constants

1

1. C program structure
• C source code program is organized as a sequence of functions.

– A function contains a logic sequence of statements.

– A statement may call another function, a function has to be

declared or defined before it can be called.

– Must contain main() function for an executable program. The

execution of a C program starts from the main() function.

• Executable program is organized as a sequence of function blocks of

machine code.

2

C program structure model
[preprocessor directives]
[global variables]
[function declarations]
main(arguments) {
[statements]
}
[function definitions]

3

/* C program structure example */
#include<stdio.h> // preprocessor directive include
int a; // global variable declaration
int add(int, int); // function declaration
int minus(int, int); // function declaration
// definition of main function, the start function
int main() // main function header
{ // start of block function definition / function body

a=1; // assign/set value 1 to global variable a
int b=2; // declare local variable b and initialize/set value 2
printf("a+b=%d\n", add(a, b)); // function calls, output a+b=3
printf("a-b=%d\n", minus(a, b)); // function calls, output a-b=-1
return 0;

} // end of block function definition
// definition/implementation of function add(int, int)
int add(int x, int y) // function header
{

return x+y; // function body
}
// definition/implementation of function minus(int, int)
int minus(int x, int y) // function header
{

return x-y; // function body
} 4

C program organization
• A large C program is decomposed into

– function header files
– header function implementation files
– a main function file, called driver program file

Refer to Lesson 1.2.4

5

2. Basic syntax
C has 5 types of elements:
symbol, keyword, expression, statement, function
• Basic symbols

6

• C has 32 reserved words (keywords)

7

(4)

(9)

(6)

(11)

(2)

• Expressions
– Use infix notation, consisting of

constants, variables, operators, parenthesis.
E.g., (1 + 2) * 3, 1==2, (1==1) && (2!=1)

• Statements
– A C statement is a command/instruction to C compiler.
– Statement types:

declaration, assignment, condition, function call, flow control
– Statements are organized to blocks (program block), a

sequence of statements scoped by { }.

8

• Function syntax

1. Function declaration/header syntax:
returndatatype function_name(argument type list);

2. Function definition/implementation syntax:
returndatatype function_name(argument type and name list)
{

// function block
}

3 Function call syntax:
function_name(parameter list)

9

3. Data types
• A data type (or simply type) defines
1. how a certain type of data values is represented in

programming.
2. how many bytes and what bit pattern are used to represent a

value in memory.
3. what and how operations are applied to the data values in

programming and computers.

Brief description: data type defines how a certain
type of data values are represented and operated in
programming and computers.

10

Primary and derived data types
• C provides primary data types (primitive, basic data types)

– Defined by keywords:
char, int, short, long, float, double, signed, unsigned

– Arithmetic operations (+, -, *, /) are defined for primary types.
Modular operation % is defined for non-floating primary data
types.

– Each of the primary data types has corresponding bit pattern in
representation and operations.

• C provides methods to build secondary data types (derived,
extended) using primary data types and keywords typedef, struct,
union, enum.

11

• Each data type has a size, i.e. the number of bytes to
store the values of the type in memory.

• Each data type and has a defined valid value range.

Example: the char type has size 1, e.g., one byte (8 bits),
value range -128 to 127

• The size of some data types is platform dependent.

Example: the int type has 2 bytes in old 16 system,
but 4 bytes in 32 and 64 bit system.

We use 4 bytes as default size for the int type.

12

Size and range of primary data types
RANGE

SIZE IN
BYTES

DATA TYPE / Keyword

-128 to 1271char

0 to 2551unsigned char

-128 to 1271signed char

-231+1 to +231-1 (-32768 to 32767)4 (2)int

0 to 232-1 (0 to 65535)4 (2)unsigned int

-231+1 to +231-1 (-32768 to 32767)4 (2)signed short int

-231+1 to +231-1 (-32768 to 32767)4 (2)signed int

-32768 to 32767 (-231+1 to +231-1)2 (4)short int

0 to 232-1 (0 to 65535)4 (2)unsigned short int

-231+1 to +231-1 (-263+1 to +263-1)4 (8)long int

0 to 264-1 (0 to 4294967295)8 (4)unsigned long int

-263+1 to +263 (-2147483648 to
2147483647)

8 (4)
signed long int

3.4E-38 to 3.4E+384float

1.7E-308 to 1.7E+3088double

3.4E-4932 to 1.1E+493210long double (C99)
13

char type
• The char type is to present characters by an integer defined by ASCII

(American Standard Code for Information Interchange). ASCII covers 128
characters, each is represented (encoded) by an integer between 0 and 127
in a well-organized way. Example: 0 is encoded by 48, A by 65, a by 97

14

• The binary presentation of ASCII code has at most 7 bits. In
computer, each addressable memory cell holds 8 bits (1 byte) .
The ASCII code of characters can be stored in one addressable
memory cell.

Example: The ASCII code of 0 is 48
4810 = 1100002 stored in memory cell as 00110000
The ASCII code of character A is 65.
6510 = 100 00012 stored as 0100 0001
ASCII code of character a is 97
97 = 65+32 = 100 00012 + 1000002 = 110 00012 stored as 0110 0001

How to do conversions of number representation in different
bases? Refer to Lesson 1.3.2
• Unicode encoding standards:

UTF-8 (Unicode Transmission Format 8-bit), UTF-16, UTF-32 15

How is char type represented/stored in memory?

• int
– Value range: from -2147483647= -231 +1 to 2147483647= 231-1
– Bit pattern: 4 bytes or 32 bits, left most bit represent sign, 0 for positive, 1

for negative, the rest 31 bits represent the absolute value in base 2
(binary format).

Example

• unsigned int
– Value range: from 0 to 4294967295 = 232-1
– Bit pattern: 4 bytes or 32 bits, 32 bits represent the value in base 2.

16

int and unsigned int types

Binary Int values

0000 0000 0000 00011

1000 0000 0000 0001-1

1111 1111 1111 1111-2147483647

Binary Int values

0000 0000 0000 00011

1111 1111 1111 11114294967295

How int type is stored in memory?
• When a data type size is bigger than 1, it needs a contiguous

memory cells (called memory block) to store the value of the type.
– Big-endian: store the most significant byte in the lowest address cell
– Little-endian: store the least significant byte in the lowest address cell.

little-endian is commonly used.

• int type size is 4, needs 4 memory cells.
For example,
242713057310
= 1001 0000 1010 1011 0001 0010 1100 1101 2
= 9 0 A B 1 2 C D 16

ValueAddress

CD1003

121002

AB1001

901000

ValueAddress

901003

AB1002

121001

CD1000

Big-endian Little-endian

17

float and double types
• float type uses 4 bytes for single precision floating

point numbers; bit pattern and operations are
specified by IEEE 754 standard.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

• double type uses 8 bytes for double precision
floating point numbers, specified by IEEE 754
standard.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

18

4. Variables
• Concepts of variables
1. A variable is a name identifier used in source code

program to represent a data value of a certain type.
2. A variable is assigned a memory block with relative

address by compiler, as well as instructions to set and
get the values to the memory block.

3. A variable is instanced at runtime with absolute
address of memory block.

Brief description: a variable is an identifier of a data
value in a program, it gets relative memory allocation at
the compile time, and actual memory block at runtime.

19

C variables
• A variable must be declared with a type and name in a scope,

and then used within the scope.
1. The variable declaration tells compiler to assign memory block

with relative address.
2. A variable assignment statement tells compilers to generate

instructions for writing values to the memory block.
3. Using the variable in an expression tells compilers to generate

instructions to read values from the memory block.
• A variable should be initiated (assigned a value) before it is

used in expressions.
• C variable names must start with a letter, followed by letters,

underscores and numbers, and case sensitive.
– C name convention: underscore_style, camelCaseStyle

20

Variable and scope

1. A variable has to be declared before it can be used. A variable
has a scope, within which the variable is declared and used.

2. Scope can be nested, i.e. one scope is inside another scope. A
variable declared before an inner scope can be used in the
inner scope. Same variable name can be used to declare and
use as a new variable in an inner scope.

3. Global variables are variable declared outside any scope, so
can be used anywhere.

4. Local variables are variables declared in a scope block
embraced by {}. e.g. in a function, so can only be used in the
scope block.

21

Literals
• Literals refer those constant values assigned to variables in

programming.
• Compiler recognizes the data types of a literal and convents to its

bit pattern representations, being used in generated instructions.
• Preprocessor #define is used to define a literal string as macro,

then use the macro in programming. During the pre-preprocessing
step, the macro will be replaced by its corresponding string.

Example
#define PI 3.1415926
float r = 4;
float area = PI*r*r;
float cf = 2*PI*r;
float f = 2.4e-5; // 2.4e-5 = 0.000024
#define MAX(a,b) ((a)>(b)? (a) : (b)) // function macro with parameters

22

Examples of variable declaration and initialization
Declaration
char c; // let compiler assign 1 byte memory space for char variable c
int a; // let compiler assign 4 bytes memory space for int variable a
float f; // let compiler assign 4 bytes memory space for float variable f

Assign values to variables
a = 2; // compiler generates instructions that store 2 to memory of variable a at runtime

c = ‘a’; // compiler generates instructions that store 9710 = 0111001 to memory of c

f = 1.41; //compiler convert 1.41 to 32 bits single precision number, and generates
instructions to store the number at memory of f.

Declaration & initialization
int a = 12; // or int a = 014; for Oct number 14, or int a = 0xC; for Hex number C
char c = ‘a’;
float f = 1.41;
int result, x = 9, y = 3; // a list separated by comma if variables are of the same type.

23

sizeof

• sizeof is a predefined keyword, a function macro, used to get

the sizes of data types or variables, applying to all data types.

Example

sizeof(char) will be replaced by 1 , the size of a character data type

int a = 10;

sizeof(a) will be replaced by 4 during the preprocessing

24

5. Constants
• Constants are fixed data values in a program.
• In C, constant variable (or read-only variable) is used to represent

constants. Constant variables are declared and initialized by
keyword const. Compiler does not allow to assign values to a
constant variable after it is declared and initialized .

Example
const float pi = 3.1415926; // pi is a read only variable
float r = 4;
float area = pi*r*r;
float cf = 2*pi*r;
pi = 3.14; // this is not allowed by compiler
• Symbolic constants are constant values defined by marco

preprocessor. Example
#define PI 3.1415926 // PI is a symbolic constant

. 25

