
Lecture 24 Entropy and Huffman coding

• Scientific computing beyond the course

• Coding theory and methods for data compression
• Entropy
• Encoding/decoding
• Huffman coding

• Final coverage and review

To read and practise

• Chapter 9 Random numbers and applications
– How to generate pseudo-random number
– Monte Carlo simulation, Brownian motion
– Stochastic differential equation (SDE), and number method.

• Chapter 10 Trigonometric Interpolation and the FFT
– Fourier transformation
– Discrete transformation
– Fast Fourier Transformation (FFT)

• Chapter 11 Compression
– Discrete Cosine Transformation (DCT)
– Hoffman coding
– Applications in Jpeg

• Chapter 13 Optimization

Follow up CS courses

• CP411 Computer Graphics
– Computing to generate computer images, knowledge of math and

scientific computing applies
– programming in C/C++ and OpenGL, industrial standard library.

• CP467 Image Processing & pattern recognition
– Image is represented as a matrix
– Image processing: filtering, FFT, compressing
– Clustering, classifying, pattern recognition
– http://bohr.wlu.ca/hfan/cp467/images/class2011/project/video.html

• CP463 Simulation
– Math modeling, simulation computing

What is Data and Image Compression?

Data compression is the art and science
of representing information in a compact
form

Why do we need Image Compression?

Still Image

 One page of A4 format at 600 dpi is > 100 MB.
 One color image in digital camera generates 10-30 MB.
 Scanned 3”7” photograph at 300 dpi is 30 MB.

Digital Cinema

4K2K3 12 bits/pel = 48 MB/frame or 1 GB/sec
or 70 GB/min, or 4.2TB/hour

2. Lossless and Lossy

Lossless compression: reversible

Lossy compression: irreversible

Rate measures

Bitrate:

Compression ratio:

image in the pixels
file compressed theof size

file compressed theof size
file original theof size

Distortion measures with lossy compression

Mean average error (MAE): 



N

i
ii xy

N 1

1MAE

Mean square error (MSE):  



N

i
ii xy

N 1

21MSE

4. Code
• Coding is to assign a binary string to represent a symbol,

or parttern
Encoding : message to bitstram
Decoding: bitstream to message

• Fixed length code -- fix length binary string
e.g. ASCII, 8 bits per symbol;

Unicode, 16 bits per symbol

• Vairale length code -- shorter length bit string for higher
frequent charaters, longer length string for lower frequent
charaters

Example

Message: B A B A C A C A DE

ASCII

A - 01000001
B - 01000010
C - 01000011
D - 01000100
E - 01000101

B A B A C A C A DE
encoding

decoding

010000100100000101000
010010000010100001101
000001010000110100000
10100010001000101

Unique prefix property for variable length coding

Unique prefix property: no code is a prefix to any other code

With binary tree expression: all symbols are the leaf nodes

0

0

1

1

A CB

A - 00
B - 01
C - 10
D - 110
E - 111

D

10

E

10

Messaage: BABA CACADE

Bitstream: 0100010010001000110111

Total: 22 bits, 2.2 bits per symbol

3. Entropy

Set of symbols (alphabet) S={s1, s2, …, sN},
N is number of symbols in the alphabet.
Probability distribution of the symbols in an
information source is P = {p1, p2, …, pN}

According to Shannon, the entropy H of an

information source is defined as follows:





N

i
ii ppH

1
2)(log

Entropy

The amount of information in symbol si, in other words, the
number of bits to code or code length for the symbol si:

)(log)(2 ii psH 





N

i
ii ppH

1
2)(log

The average number of bits for the source S:

Entropy for binary source: N=2

))1(log)1(log(22 ppppH 

S={0,1}
p0=p
p1=1-p

0 1

p

1-p

H=1 bit for p0=p1=0.5

Entropy for uniform distribution: pi=1/N

Uniform distribution of probabilities: pi=1/N:

)(log)/1(log)/1(2
1

2 NNNH
N

i





Examples:
N= 2: pi=0.5; H=log2(2) = 1 bit
N=256: pi=1/256; H=log2(256)= 8 bits

Pi=1/N

s1 s2 sN

Entropy of the message

Symbol pi -log2(pi)
A 4/10 1.3219
B 2/10 2.3219
C 2/10 2.3219
D 1/10 3.3219
E 1/10 3.3219

B A B A C A C A D E

H = -(0.4*log2(0.4) + 0.2 * log2(0.2) + 0.2 * log2(0.2)
+ 0.1 * log2(0.1) + 0.1 * log2(0.1))

H = 2.1219

The minimum bit rate for each simple is 2.12

Huffman Code: A bottom-up approach

INIT:
Put all nodes in an OPEN list, keep it sorted all times
according their probabilities;.

REPEAT
a) From OPEN pick two nodes having the lowest

probabilities, create a parent node of them.

b) Assign the sum of the children’s probabilities
to the parent node and inset it into OPEN

c) Assign code 0 and 1 to the two branches of the
tree, and delete the children from OPEN.

Huffman Code: Example

Symbol pi -log2(pi) Code Subtotal
A 4/10 1.3219 0 1*4
B 2/10 2.3219 100 3*2
C 2/10 2.3219 101 3*2
D 1/10 3.3219 110 3*1
E 1/10 3.3219 111 3*1

Total: 22 bits

Binary tree by Huffman coding

0 1

10

10

A

C D E

1

B 1/10 1/10

2/10

2/102/10

4/10

4/10

6/10

10/10

Huffman Code: Decoding

A - 0
B - 100
C - 101
D - 110
E - 111

Decoding
Bitstream: 1000100010101010110111
Codes: 100 0 100 0 101 0 101 0 110 111
Message: B A B A C A C A D E

Encoding
Message: B A B A C A C A D E
Codes: 100 0 100 0 101 0 101 0 110 111
Bitstream: 1000100010101010110111 (22 bits)

