
Lecture 24  Entropy and Huffman coding

• Scientific computing beyond the course

• Coding theory and methods for data compression
• Entropy
• Encoding/decoding
• Huffman coding

• Final coverage and review



To read and practise

• Chapter 9  Random numbers and applications
– How to generate pseudo-random number
– Monte Carlo simulation, Brownian motion
– Stochastic differential equation (SDE), and number method. 

• Chapter 10 Trigonometric Interpolation and the FFT
– Fourier transformation
– Discrete transformation
– Fast Fourier Transformation (FFT)

• Chapter 11 Compression
– Discrete Cosine Transformation (DCT)
– Hoffman coding
– Applications in Jpeg

• Chapter 13 Optimization



Follow up CS courses 

• CP411 Computer Graphics
– Computing to generate computer images,  knowledge of math and 

scientific computing applies
– programming in C/C++ and OpenGL, industrial standard library. 

• CP467 Image Processing & pattern recognition
– Image is represented as a matrix
– Image processing: filtering, FFT, compressing
– Clustering, classifying, pattern recognition
– http://bohr.wlu.ca/hfan/cp467/images/class2011/project/video.html

• CP463 Simulation
– Math modeling, simulation computing



What is Data and Image Compression?

Data compression is the art and science 
of representing information in a compact 
form



Why do we need Image Compression?

Still Image

 One page of A4 format at 600 dpi is > 100 MB. 
 One color image in digital camera generates 10-30 MB. 
 Scanned 3”7” photograph at 300 dpi is 30 MB.

Digital Cinema

4K2K3 12 bits/pel = 48 MB/frame or 1 GB/sec 
or 70 GB/min, or 4.2TB/hour



2. Lossless and Lossy

Lossless compression: reversible

Lossy compression: irreversible 



Rate measures

Bitrate:

Compression ratio:

image in the pixels
file compressed  theof size

file compressed  theof size
file original  theof size



Distortion measures with lossy compression

Mean average error (MAE): 
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4. Code 
• Coding is to assign a binary string to represent a symbol, 

or parttern
Encoding : message to bitstram
Decoding: bitstream to message

• Fixed length code -- fix length binary string
e.g. ASCII, 8 bits  per symbol;

Unicode, 16 bits per symbol 

• Vairale length code -- shorter length bit string for higher 
frequent charaters, longer length string for lower frequent 
charaters



Example

Message: B A B A C A C A DE

ASCII 

A - 01000001
B - 01000010
C - 01000011
D - 01000100
E - 01000101

B A B A C A C A DE
encoding

decoding

010000100100000101000
010010000010100001101
000001010000110100000
10100010001000101



Unique prefix property for variable length coding

Unique prefix property: no code is a prefix to any other code

With binary tree expression: all symbols are the leaf nodes

0
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A - 00
B - 01
C - 10
D - 110
E - 111

D

10

E
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Messaage: BABA CACADE

Bitstream:  0100010010001000110111

Total: 22 bits,  2.2 bits per symbol



3.  Entropy

Set of symbols (alphabet)  S={s1, s2, …, sN},
N is number of symbols in the alphabet. 
Probability distribution of the symbols in an 
information source is P = {p1, p2, …, pN}

According to Shannon, the entropy H of an 

information source  is defined as follows:
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Entropy

The amount of information in symbol si, in other words, the 
number of bits to code or code length for the symbol si:

)(log)( 2 ii psH 





N

i
ii ppH

1
2 )(log

The average number of bits for the source S:



Entropy for binary source: N=2
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S={0,1}
p0=p
p1=1-p
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H=1 bit   for p0=p1=0.5



Entropy for uniform distribution: pi=1/N

Uniform distribution of probabilities: pi=1/N:
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Examples: 
N= 2:    pi=0.5;         H=log2(2)    = 1 bit
N=256: pi=1/256;      H=log2(256)= 8 bits

Pi=1/N

s1 s2 sN



Entropy of the message

Symbol      pi -log2(pi) 
A 4/10 1.3219           
B 2/10 2.3219 
C 2/10 2.3219         
D 1/10            3.3219         
E 1/10            3.3219         

B    A  B   A  C   A   C  A    D    E

H = -(0.4*log2(0.4) + 0.2 * log2(0.2) +  0.2 * log2(0.2) 
+  0.1 * log2(0.1) + 0.1 * log2(0.1))

H = 2.1219

The minimum bit rate for each simple is 2.12



Huffman Code: A bottom-up approach

INIT:
Put all nodes in an OPEN list, keep it sorted all times
according their probabilities;.

REPEAT
a) From OPEN pick two nodes having the lowest

probabilities, create a parent node of them.  

b) Assign the sum of the children’s probabilities 
to the parent node and inset it into OPEN

c) Assign code 0 and 1 to the two branches of the 
tree, and delete the children from OPEN.



Huffman Code: Example

Symbol      pi -log2(pi)      Code Subtotal 
A 4/10 1.3219            0 1*4
B 2/10 2.3219         100               3*2
C 2/10 2.3219         101               3*2
D 1/10            3.3219         110               3*1 
E 1/10            3.3219         111               3*1  

Total:                                                          22 bits

Binary tree by Huffman coding
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Huffman Code: Decoding

A - 0
B - 100 
C - 101
D - 110
E - 111

Decoding
Bitstream: 1000100010101010110111
Codes: 100 0 100 0 101 0 101 0 110 111
Message: B  A  B   A  C   A   C  A   D    E

Encoding
Message: B    A  B   A  C   A   C  A    D    E
Codes:    100 0 100 0 101 0 101 0 110 111
Bitstream: 1000100010101010110111  (22 bits)


