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Preface 

Few technical terms have gained such rapid notoriety as the appela
tion " NP-complete." In the short time since its introduction in the early 
l 970's, this term has come to symbolize the abyss of inherent intractability 
that algorithm designers increasingly face as they seek to solve larger and 
more complex problems. A wide variety of commonly encountered prob
lems from mathematics, computer science, and operations research are now 
known to be NP-complete, and the collection of such problems continues to 
grow almost daily . Indeed, the NP-complete problems are now so pervasive 
that it is important for anyone concerned with the computational aspects of 
these fields to be familiar with the meaning and implications of this concept. 

This book is intended as a detailed guide to the theory of NP
completeness, emphasizing those concepts and techniques that seem to be 
most useful for applying the theory to practical problems. It can be viewed 
as consisting of three parts. 

The first part, Chapters 1 through 5, covers the basic theory of NP
completeness. Chapter 1 presents a relatively low-level introduction to 
some of the central notions of computational complexity and discusses the 
significance of NP-completeness in this context. Chapters 2 through 5 pro
vide the detailed definitions and proof techniques necessary for thoroughly 
understanding and applying the theory. 

The second part , Chapters 6 and 7, provides an overview of two al
ternative directions for further study. Chapter 6 concentrates on the search 
for efficient "approximation" algorithms for NP-complete problems, an area 
whose development has seen considerable interplay with the theory of NP
completeness. Chapter 7 surveys a large number of theoretical tOpics in 
computational complexity, many of which have arisen as a consequence of 
previous work on NP-completeness. Both of these chapters (especially 
Chapter 7) are intended solely as introductions to these areas, with our ex
pectation being that any reader wishing to pursue particular topics in more 
detail will do so by consulting the cited references. 

The third and final part of the book is the Appendix, which contains 
an extensive list (more than 300 main entries, and several times this many 
results in total) of NP-complete and NP-hard problems. Annotations to the 
main entries discuss what is known about the complexity of subproblems 
and variants of the stated problems. 
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The book should be suitable for use as a supplementary text in 
courses on algorithm design, computational complexity, operations research, 
or combinatorial mathematics. It also can be used as a starting point for 
seminars on approximation algorithms or computational complexity at the 

·graduate or advanced undergraduate level. The second author has used a 
preliminary draft as the basis for a graduate seminar on approximation algo
rithms, covering Chapters 1 through 5 in about five weeks and then pursu
ing the topics in Chapter 6, supplementing them extensively with additional 
material from the references. A seminar on computational complexity 
might proceed similarly, substituting Chapter 7 for Chapter 6 as the initial 
access point to the literature. It is also possible to cover both chapters in a 
combineci seminar. 

More generally, the book can serve both as a self-study text for any
one interested in learning about the subject of NP-completeness and as a 
reference book for researchers and practitioners who are concerned with al
gorithms and their complexity. The list of NP-complete problems in the 
Appendix can be used by anyone familiar with the central notions of NP
completeness, even without having read the material in the main text. The 
novice can gain such familiarity by skimming the material in Chapters 1 
through 5, concentrating on the informal discussions of definitions and 
techniques, and returning to the more formal material only as needed for 
clarification. To aid those using the book as a reference, we have included a 
substantial number of terms in the Subject Index, and the extensive Refer
ence and Author Index gives the sections where each reference is men
tioned in the text. 

We are indebted to a large number of people who have helped us 
greatly in preparing this book. Hal Gabow, Larry Landweber, and Bob Tar
jan taught from preliminary versions of the book and provided us with valu
able suggestions based on their experience. The following people read pre
liminary drafts of all or part of the book and made constructive comments: 
Al Aho, Shimon Even, Ron Graham, Harry Hunt, Victor Klee, Albert 
Meyer, Christos Papadimitriou, Henry Pollak, Sartaj Sahni, Ravi Sethi , Lar
ry Stockmeyer, and Jeff Ullman. A large number of researchers, too 
numerous to mention here (but see the Reference and Author Index) , 
responded to our call for NP-completeness results and contributed toward 
making our list of NP-complete problems as extensive as it is. Several of 
our colleagues at Bell Laboratories, especially Brian Kernighan, provided in
valuable assistance with computer typesetting on the UNIX® system. Final
ly, special thanks go to Jeanette Reinbold, whose facility with translating 
our handwritten hieroglyphics into faultless input to the typesetting system 
made the task of writing this book so much easier. 

Murray Hill, New Jersey 
October, 1978 

MICHAEL R. GAREY 

DAVIDS. JOHNSON 

COMPUTERS AND INTRACTABILITY 
A Guide to the Theory of NP-Completeness 



1.1 Introduction 

1 

Computers, Complexity, 
and Intractability 

The subject matter of this book is perhaps best introduced through the 
following, somewhat whimsical , example. 

Suppose that you, like the authors, are employed in the halls of indus
try. One day your boss calls you into his office and confides that the com
pany is about to enter the highly competitive "bandersnatch" market. For 
this reason, a good method is needed for determining whether or not any 
given set of specifications for a new bandersnatch component can be met 
and, if so, for constructing a design that meets them. Since you are the 
company's chief algorithm designer, your charge is to find an efficient algo
rithm for doing this. 

After consulting with the bandersnatch department to determine exactly 
what the problem is, you eagerly hurry back to your office, pull down your 
reference books, and plunge into the task with great enthusiasm. Some 
weeks later, your office filled with mountains of crumpled-up scratch paper, 
your enthusiasm has lessened considerably. So far you have not been able 
to come up with any algorithm substantially better than searching through 
all possible designs. This would not particularly endear you to your boss, 
since it would involve years of computation time for just one set of 
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specifications, and the bandersnatch department is already 13 components 
behind schedule. You certainly don't want to return to his office and re
port : 

" I can't find an efficient algorithm, I guess I'm just too dumb." 

To avoid serious damage to your position within the company, it would 
be much better if you could prove that the bandersnatch problem is in
herently intractable, that no algorithm could possibly solve it quickly. You 
then could stride confidently into the boss's office and proclaim: 

"I can' t find an efficient algorithm, because no such algorithm is possible!" 

Unfortunately, proving inherent intractability can be just as hard as 
finding efficient algorithms. Even the best theoreticians have been stymied 
in their attempts to obtain such proofs for commonly encountered hard 
problems. However, having read this book, you have discovered something 
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almost as good. The theory of NP-completeness provides many straightfor
ward techniques for proving that a given problem is "just as hard" as a 
large number of other problems that are widely recognized as being difficult 
and that have been confounding the experts for years. Armed with these 
techniques, you might be able to prove that the bandersnatch problem is 
NP-complete and, hence, that it is equivalent to all these other hard prob
lems. Then you could march into your boss's office and announce: 

" I can't find an efficient algorithm, but neither can all these famous people." 

At the very least, this would inform your boss that it would do no good to 
fire you and hire another expert on algorithms. 

Of course, our own bosses would frown upon our writing this book if 
its sole purpose was to protect the jobs of algorithm designers. Indeed, dis
covering that a problem is NP-complete is usually just the beginning of 
work on that problem. The needs of the bandersnatch department won't 
disappear overnight simply because their problem is known to be NP
complete. However, the knowledge that it is NP-complete does provide 
valuable information about what lines of approach have the potential of be
ing most productive. Certainly the search for an efficient, exact algorithm 
should be accorded low priority. It is now more appropriate to concentrate 
on other, less ambitious, approaches. For example, you might look for 
efficient algorithms that solve various special cases of the general problem. 
You might look for algorithms that, though not guaranteed to run quickly, 
seem likely to do so most of the time. Or you might even relax the prob
lem somewhat, looking for a· fast algorithm that merely finds designs that 



4 
COMPUTERS, COMPLEXITY, AND INTRACTABILITY 

~eet most of the component specifications. In short, the primary applica
t1_on ~f the t_heory of NP-completeness is to assist algorithm designers in 
dtrectmg their problem-solving efforts toward those approaches that have 
the greatest likelihood of leading to useful algorithms. 

In the first chapter of this "guide" to NP-completeness we introduce 
many of t~e underlying concepts, discuss their applicability (~s well as give 
some cautions), and outline the remainder of the book. 

1.2 Problems, Algorithms, and Complexity 

In order to elaborate on what is meant by "inherently intractable" 
problems and problems having "equivalent" difficulty, it is important that 
we first agree on the meaning of several more basic terms. 

. Let us begin with _t he notion of a problem. For our purposes, a problem · 
will be a general question to be answered, usually possessing several param
eters,. or free _v~riables, whose values are left unspecified. A problem is 
described by g1vmg: (1) a general description of all its parameters, and (2) 
a sta_tement of what properties the answer, or solution, is required to satisfy. 
An instance of a problem is obtained by specifying particular values for all 
the problem parameters. 

As an example, consider the classical " traveling salesman problem." 
Th7, ~a.ra~eters of this probl_em co~~ist of a finite set C = fci.c2, ... , cm} 
of c1t1es and, for each pair of c1t1es c;,c1 in C, the "distance" d(ci,c) 
b~twee~ . them. A solution is an ordering < crr(l).Crr(2), ... , crr(ml > of the 
given c1t1es that minimizes 

[ mil d(c rr(i),C,,(;+I)) ) + d(crr(m).Crr(I)) 
1- 1 

This e_xpr~ssion gives the length of the "tour" that starts at c"m' visits 
each city m sequence, and then returns directly to crr(I) from the last city 
C,,(m)· 

One instance of the traveling salesman problem illustrated in Figure 
1.1, is given by C = {c"c2,c3,c4}, d(c"c2) '= IO, d(c"c) = 5, 
d(c1>c4) = 9, ~(c2,c3) =. 6, d(c2,~4)_ = 9, and d(c3,c4) = 3. The ordering 
<ci.c_2,~4,c3> is a solut10n for this instance, as the corresponding tour has 
the mm1mum possible tour length of 27. 

Algorithms are general , step-by-step procedures for solving problems. 
Fo_r con~reteness, we can think of them simply as being computer programs, 
written m s~me precise computer language. An algorithm is said to solve a 
problem n 1f that algorithm can be applied to any instance / of n and is 
guaranteed always to produce a solution for that instance /. We emphasize 
that the term "solution" is intended here strictly in the sense introduced 
above, so that, in particular, an algorithm does not "solve" the traveling 
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Figure 1.1 An instance of the traveling salesman problem and a tour of length 27, 
which is the minimum possible in this case. 

salesman problem unless it always constructs an ordering that gives a 
minimum length tour. 

In general, we are interested in finding the most "efficient" algorithm 
for solving a problem. In its broadest sense, the notion of efficiency in
volves all the various computing resources needed for executing an algo
rithm. However, by the "most efficient" algorithm one normally means the 
fastest. Since time requirements are often a dominant factor determining 
whether or not a particular algorithm is efficient enough to be useful in 
practice, we shall concentrate primarily on this single resource. 

The time requirements of an algorithm are conveniently expressed in 
terms of a single variable, the "size" of a problem instance, which is in
tended to reflect the amouni: of input data needed to describe the instance. 
This is convenient because we would expect the relative difficulty of prob
lem instances to vary roughly with their size. Often the size of a problem 
instance is measured in an informal way. For the traveling salesman prob
lem, for example, the number of cities is commonly used for this purpose. 
However, an m-city problem instance includes, in addition to the labels of 
them cities, a collection of m(m- 1)/2 numbers defining the inter-city dis
tances, and the sizes of these numbers also contribute to the amount of in
put data. If we are to deal with time requirements in a precise, mathemati
cal manner, we must take care to ·define instance size in such a way that all 
these factors are taken into account. 

To do this, observe that the description of a problem instance that we 
provide as input to the computer can be viewed as a single finite string of 
symbols chosen from a finite input alphabet. Although there are many 
different ways in which instances of a given problem might be described, let 
us assume that one particular way has been chosen in advance and that each 
problem has associated with it a fixed encoding scheme , which maps problem 
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instances into the strings describing them. The input length for an instance 
I of a problem Il is defined to be the number of symbols in the description 
of I obtained from the encoding scheme for II. It is this number, the input 
length, that is used as the formal measure of instance size. 

For example, instances of the traveling salesman problem might be 
described using the alphabet {c,[, ], /, 0, 1, 2, 3, 4, 5, 6, 7,8 , 9), with our pre
vious example of a problem instance being encoded by the string 
"c[l]c[2]c[3]c[4]//10/ 5/ 9//6/ 9//3." More complicated instances would be 
encoded in analogous fashion. If this were the encoding scheme associated 
with the traveling salesman problem, then the input length for our example 
would be 32. 

The time complexity function for an algorithm expresses its time require
ments by giving, for each possible input length , the largest amount of time 
needed by the algorithm to solve a problem instance of that size. Of 
course, this function is not well-defined until one fixes the encoding scheme 
to be used for determining input length and the computer or computer 
model to be used for determining execution time. However, as we shall 
see, the particular choices made for these will have little effect on the broad 
distinctions made in the theory of NP-completeness. Hence, in what fol
lows, the reader is advised merely to fix in mind a particular encoding 
scheme for each problem and a particular computer or computer model, and 
to think in terms of time complexity as determined from the corresponding 
input lengths and execution times. 

1.3 Polynomial Time Algorithms and Intractable Problems 

Different algorithms possess a wide variety of different time complexity 
functions, and the characterization of which of these are "efficient enough" 
and which are "too inefficient" will always depend on the situation at hand. 
However, computer scientists recognize a simple distinction that offers con
siderable insight into these matters. This is the distinction between polyno
mial time algorithms and exponential time algorithms. 

Let us say that a function f (n) is 0 (g (n)) whenever there exists a 
constant c such that JJ(n) I ~ c-Jg(n) I for all values of n ~O. A polynomi
al time algorithm is defined to be one whose time complexity function is 
O(p(n)) for some polynomial function p , where n is used to denote the in
put length. Any algorithm whose time complexity function cannot be so 
bounded is called an exponential time algorithm (although it should be noted 
that this definition includes certain non-polynomial time complexity func
tions, like n logn , which are not normally regarded as exponential functions). 

The distinction between these two types of algorithms has particular 
significance when considering the solution of large problem instances. Fig
ure 1.2 illustrates the differences in growth rates among several typical com
plexity functions of each type, where the functions express execution time 
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. terms of microseconds. Notice the much more explosive growth rates 
10 I . f . for the two exponential comp ex1ty unctions. 

- Size n 

Time 
complexity 10 20 30 40 50 60 

function 
~ 

.00001 .00002 .00003 .00004 .00005 .00006 
n second second second second second second 

-
.0001 .0004 .0009 .0016 .0025 .0036 

n2 
second second second second second second 

.001 .008 .027 .064 .125 .216 
n3 

second second second second second second 

.1 3.2 24.3 1.7 5.2 13.0 
n s 

second seconds seconds minutes minutes minutes 
~ 

.001 1.0 17.9 12.7 35.7 366 
2n 

second second minutes days years centuries 

.059 58 6.5 3855 2X 108 1.3xl013 

3n 
second minutes years centuries centuries centuries 

Figure 1.2 Comparison of several polynomial and exponential time complexity 
functions. 

Even more revealing is an examination of the effects of improved com
puter technology on algorithms having these time complexit?' functions. 
Figure 1.3 shows how the largest problem instance ~olvable m one hour 
would change if we had a computer 100 or 1000 times faster than ~ur 
present machine. Observe that with the 2n algorithm a thousand-fold in

crease in computing speed only adds 10 to .the size 
5
of the_ largest. pr?blem 

instance we can solve in an hour, whereas with the n algorithm this size al-
most quadruples. . . 

These tables indicate some of the reasons why polynomial time algo
rithms are generally regarded as being much more desirable than exponen
tial time algorithms. This view, and the distinction between the two types 
of algorithms, is central to our notion of inherent intractability and to the 
theory of NP-completeness. . . 

The fundamental nature of this distinction was first discussed m [Cob
ham, 1964] and [Edmonds, 1965a]. Edmonds, in particular, equated poly-
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Time 
complexity 
function 

n 

n2 

n3 

n5 

2n 

3n 
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Size of Largest Problem Instance 
Solvable in l Hour 

With present With computer With computer 
computer 100 times faster IOOO times faster 

N i 100 Ni IOOO Ni 

N2 IO N2 31.6 N2 

N3 4.64 N3 IO N3 

N4 2.5 N4 3.98 N4 

Ns Ns+6.64 Ns+9.97 

N6 N6 +4.19 N6+6.29 

Figure 1.3 Effect of improved technology on several polynomial and exponential 
time algorithms. 

nomial time algorithms with "good" algorithms and conjectured that certain 
integer programming problems might not be solvable by such "good" algo
rithms. This reflects the viewpoint that exponential time algorithms should 
not be considered "good" algorithms, and indeed this usually is the case. 
Most exponential time algorithms are merely variations on exhaustive 
search, whereas polynomial time algorithms generally are made possible 
only through the gain of some deeper insight into the structure of a prob
lem. There is wide agreement that a problem has not been " well-solved" 
until a polynomial time algorithm is known for it. Hence, we .shall refer to 
a problem as intractable if it is so hard that no polynomial time algorithm 
can possibly solve it. 

Of course, this formal use of "intractable" should be viewed only as a 
rough approximation to its dictionary meaning. The distinction between 
"efficient" polynomial time algorithms and "inefficient" exponential time 
algorithms admits of many exceptions when the problem instances of in
terest have limited size. Even in Figure 1.2, the 2n algorithm is faster than 
the n 5 algorithm for n .:::;; 20. More extreme examples can be constructed 
easily. 

Furthermore, there are some exponential time algorithms that have 
been quite useful in practice. Time complexity as defined is a worst-case 
measure, and the fact that an algorithm has time complexity 2n means only 
that at least one problem instance of size n requires that much time. Most 
problem instances might actually require far less time than that, a situation 
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l. 
9 

that appears to hold for several well-known algorithms. The simpl~x a~go-
'th for linear programming has been shown to have exponential time 

ri m 973) · h · · complexity [Klee and Minty, 1972), [Zadeh, l . , but 1t as an 1mpress1ve 
record of running quickly in practice. Likewise, branch-and-bound al~o-
'thms for the knapsack problem have been so successful that many cons1d

~1r it to be a "well-solved" problem, even though these algorithms, too, 

have exponential time complexity. 
Unfortunately, examples like these are quite rare. Although exponen-

tial time algorithms are known for many problems, few of them ~re :egard
ed as being very useful in practice. Even the successful exponenlla~ t1~e al
gorithms mentioned above have not stopped re~earchers from contmumg to 
search for polynomial time algorithms for solving those pro?l~ms . In fact, 
the very success of these algorithms has led to the susp1c10n that they 
somehow capture a crucial property of the problems whose refinement could 
lead to still better methods. So far, little progress has been i:na.de t?ward 
explaining this success, and no method~ are ~nown fo: pre~1ctmg ~n ad
vance that a given exponential time algori thm will run quickly m practice. 

On the other hand, the much more stringent bounds on execution time 
satisfied by polynomial time algorithms often permit such predictions to be 

. h . . 1 't 100 1099n2 made. Even though an algorithm avmg ttme comp ext Y n or . 
might not be considered likely to run quickly in practice, t.he. polynom1a~ly 
solvable problems that arise naturally tend to be solvable w1thm polynomial 
time bounds that have degree 2 or 3 at worst and that do not involve ex
tremely large coefficients. Algorithms satisfying such bounds can be con
sidered to be "provably efficient," and it is this much-desired property that 
makes polynomial time algorithms the preferred way to solve problems. 

Our definition of " intractable" also provides a theoretical framework of 
considerable generality and power. The intractability of a problem turns out 
to be essentially independent of the particular encoding scheme and com
puter model used for determining time complexity. 

Let us first consider encoding schemes. Suppose for example that we 
are dealing with a problem in which each instance is a graph G = (.V,E), 
where V is the set of vertices and E is the set of edges, each edge being an 
unordered pair of vertices. Such an instance might be described (see Figure 
l.4) by simply listing all the vertices and edges, or by listing the rows of the 
adjacency matrix for the graph, or by listing for each vertex all the other 
vertices sharing a common edge with it (a "neighbor" list) . Each of these 
encodings can give a different input length for the same graph. However, it 
is easy to verify (see Figure 1.5) that the input lengths they determine 
differ at most polynomially from one another, so that any algorithm having 
polynomial time complexity under one of these encoding schemes also will 
have polynomial time complexity under all the others. In fact, the standard 
encoding schemes used in practice for any particular problem always seem 
to differ at most polynomially from one another. It would be difficult to 
imagine a " reasonable" encoding scheme for a problem that differs more 
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than polynomially from the standard ones. Although what we mean here by 
"reasonable" cannot be formalized, the following two conditions capture 
much of the notion: 

(1) the encoding of an instance I should be concise and not "pad
ded" with unnecessary information or symbols, and 

(2) numbers occurring in I should be represented in binary (or de-
cimal, or octal, or in any fixed base other than 1). 

If we restrict ourselves to encoding schemes satisfying these conditions, 
then the particular encoding scheme used should not affect the determina
tion of whether a given problem is intractable. 

Encoding Scheme String Length 

Vertex list, Edge list V[l)V[2)V[3]V[4] (V[l]V[2]) (V[2]V[3]) 36 

Neighbor list (V[2])(V[I]V[3])(V[2])() 24 

Adjacency matrix rows 0100/1010/0010/0000 19 

Figure 1.4 Descriptions of the graph G = ( V,E) where V = {Vi. V2, V3, V4 ) and 
E = { {Vi. V2) , { V2, V3)), under three different encoding schemes. 

Encoding Scheme Lower Bound Upper Bound 

Vertex list, Edge list 4v + lOe 4v + lOe + (v+2e)·rlog10vl 

Neighbor list 2v + 8e 2v + 8e + 2e · rlog10vl 

Adjacency matrix v2 + v - 1 v2 + v - 1 

Figure 1.5 General bounds on input lengths for the three encoding schemes of 
Figure 1.4 for graphs G = ( V,E) with I VI= v, 1£1 = e. Since e < v2, 

these show that the input lengths differ at most polynomially from each 
other. crxl denotes the least integer not less than x.) 

Similar comments can be made concerning the choice of computer 
models. All the realistic models of computers studied so far, such as one
tape Turing machines, multi-tape Turing machines, and random-access 
machines (RAMs), are equivalent with respect to polynomial time complex
ity (for example, see Figure 1.6). One would expect any other "reason
able" model to share in this equivalence. The notion of "reasonable" in-

PROVABLY INTRACTABLE PROBLEMS 
J.4 
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d d here is essentially that there is a polynomial bound on the amount of 
ten : that can be done in a single unit of time. Thus, for ex~mpl~, a model 
wor. the capability of performing arbitrarily many operat10ns m par~Llel 
havilndg t be considered " reasonable " and indeed no existing (or planned) 
wou no , . I 

h S this capability At any rate so long as we restrict ourse ves to 
computer a · ' . 

d rd models of realistic computers the class of intractable problems 
the stan a ' 
will be unaffected by the par~icular ~ode\ use~ , ~nd we can . ma~~ our 
choice on the basis of convenience without sacnficmg the appltcab1hty of 

our results. 

Simulating machine A 

Simulated machine B lTM kTM RAM 

1-Tape Turing Machine (lTM) - O(T(n)) O(T(n}logT(n)} 

k-Tape Turing Machine (kTM) O(T2(n)) - O(T(n)logT(n)) 

Random Access Machine (RAM) O(T3(n)) O(T2( n)) -

Figure 1.6 Time required by machine A to simulate the execution of an algorithm 
of time complexity T(n) on Machine B (for example, see [Hopcroft 
and Ullman, 1969] and [Aho, Hopcroft, and Ullman, 1974]) . 

1.4 Provably Intractable Problems 

Now that we have discussed the formal meaning of "intractable prob
lem," it is appropriate that we briefly survey the current state of knowledge 
about the existence of intractable problems. 

It is useful to begin by distinguishing between two different causes of 
intractability allowed by our definition. The first, which is the one we us~
ally have in mind, is that the problem is so difficult that an e.xponent1al 
amount of time is needed to discover a solution. The second is. that t.he 
solution itself is required to be so extensive that it c.annot b~ descnbed. with 
an expression having length bounded by a polynomial function of the input 

length. 1· This second cause occurs, for example, in the variant of the trave mg 
salesman problem that includes a number B as an additi?nal parameter and 
that asks for all tours having total length B or less. It 1s easy to construct 
instances of this problem in which exponentially many tours are sho~ter 
than the given bound, so that no polynomial time algorithm could possibly 

list them all. . . . 
Intractability of this sort is by no means insignificant, a~d it ~s 1mpo:-

tant to recognize it when it occurs. However, in most cases its existence is 
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apparent from the problem definition. In fact, this type of intractability can 
be regarded as a signal that the problem is not defined realistically, because 
we are asking for more information than we could ever hope to use. Thus, 
from now on we shall restrict our attention to the first type of intractability. 
Accordingly, only problems for which the solution length is bounded by a 
polynomial function of the input length will be considered. 

The earliest intractability results for such problems are the classical un
decidability results of Alan Turing. Over 40 years ago, Turing demonstrated 
that certain problems are so hard that they are "undecidable," in the sense 
that no algorithm at all can be given for solving them. He proved, for ex
ample, that it is impossible to specify any algorithm which, given an arbi
trary computer program and an arbitrary input to that program, can decide 
whether or not the program will eventually halt when applied to that input 
[Turing, 1936]. A variety of other problems are now known to be undecid
able, including the triviality problem for finitely presented groups [Rabin, 
1958), Hilbert's tenth problem (solvability of polynomial equations in in
tegers) [Matijasevic, 1970], and several problems of "tiling the plane" 
[Berger, 1966]. Since these undecidable problems cannot be solved by any 
algorithm, much less a polynomial time algorithm, they indeed are intract
able in an especially strong sense. 

The first examples of intractable " decidable" problems were obtained 
in the early l 960's, as part of work on complexity "hierarchies" by Hart
manis and Stearns (1965]. However, these results involved only "artificial" 
problems, specifically constructed to have the appropriate properties. It was 
not until the early 1970's that Meyer and Stockmeyer [1972], Fischer and 
Rabin [1974] , and others finally succeeded in proving some "natural" de
cidable problems to be intractable. These include a variety of previously 
studied problems from automata theory, formal language theory, and 
mathematical logic. In fact, the proofs show that these problems cannot be 
solved in polynomial time using even a "nondeterministic" computer 
model, which has the ability to pursue an unbounded number of indepen
dent computational sequences in parallel. We shall see that this "unreason
able" computer model plays an important role in the theory of NP
completeness, and its capabilities will be specified more fully in Chapter 2. 

All the provably intractable problems known to date fall into the two 
categories we have just mentioned. They are either undecidable or "non
deterministically" intractable. However, most of the apparently intractable 
problems encountered in practice are decidable and can be solved in poly
nomial time with the aid of a nondeterministic computer. Thus, none of 
the proof techniques developed so far is powerful enough to verify the ap
parent intractability of these problems. 
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t.5 NP-Complete Problems 

As theoreticians continue to seek more powerful methods for proving 
problems int~actable, parallel eff ?rts focus on ~earning more a_bo_ut t~e ways 
in which vanous problems are interrelated with respect to their difficulty. 
As we suggested earlier, the discovery of such relationships between prob
lems often can provide information useful to algorithm designers. 

The principal technique used for demonstrating that two problems are 
related is that of " reducing" one to the other, by giving a constructive 
transformation that maps any instance of the first problem into an 
equivalent instance of the second. Such a transformation provide_s the 
means for converting any algorithm that solves the second problem mto a 
corresponding algorithm for solving the first problem. 

Many simple examples of such reductions have been known for some 
time. For example, Dantzig [1960] reduced a number of combinatorial op
timization problems to the general zero-one integer linear programming 
problem. Edmonds [1962] reduced the graph theoretic problems of " cover
ing all edges with a minimum number of vertices" and "finding a max
imum independent set of vertices" to the general " set covering problem." 
Gimpel [1965] reduced the general set covering problem to the "prime im
plicant covering problem" of logic design. Dantzig, Blattner, and Rao 
[1966] described a "well-known" reduction from the traveling salesman 
problem to the "shortest path problem" with negative edge lengths allowed. 

These early reductions, although rather isolated and limited in scope, 
foreshadow the kind of results proved in the theory of NP-completeness. 

The foundations for the theory of NP-completeness were laid in a paper 
of Stephen Cook, presented in 1971 , entitled "The Complexity of Theorem 
Proving Procedures" [Cook, 197la] . In this brief but elegant paper Cook 
did several important things. 

First, he emphasized the significance of "polynomial time reducibility ," 
that is reductions for which the required transformation can be executed by 
a poly~omial time algorithm. If we have a polynomial time reduction from 
one problem to another, this ensures that any polynomial time algorithm for 
the second problem can be converted into a corresponding polynomial time 
algorithm for the first problem. 

Second he focused attention on the class NP of decision problems that 
can be solv~d in polynomial time by a nondeterministic computer. (A deci
sion problem is one whose solution is either "yes" or "no".) Most of the 
apparently intractable problems encountered in practice, when phrased as 
decision problems, belong to this class. 

Third, he proved that one particular problem in NP, called the 
"satisfiability" problem, has the property that every other problem in NP 
can be polynomially reduced to it. If the satisfiability problem can be solved 
with a polynomial time algorithm, then so can every problem in NP, and if 
any problem in NP is intractable, then the satisfiability problem also must 
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be intractable. Thus, in a sense, the satisfiability problem is the " hardest" 
problem in NP. 

Finally, Cook suggested that other problems in NP might share with 
the satisfiability problem this property of being the " hardest" member of 
NP. He showed this to be the case for the problem " Does a give n graph G 
contain a complete subgraph on a given number k of vertices?" 

Subsequently, Richard Karp presented a collection of results [Karp, 
1972) proving that indeed the decision problem versions of many well 
known combinatorial problems, including the traveling salesman problem, 
are just as "hard" as the satisfiability problem. Since then a wide variety of 
other problems have been proved equivalent in difficulty to these problems, 
and this equivalence class, consisting of the " hardest" problems in NP, has 
been given a name: the class of NP-complete problems. 

Cook's original ideas have turned out to be remarkably powerful. They 
have provided the means for combining many individual complexity ques
tions into the single question: Are the NP-complete problems intractable? 
The lists included in the Appendix of this book contain literally hundreds of 
different problems now known to be NP-complete. As more and more 
problems of independent interest are shown to belong to this equivalence 
class, its importance is continually reinforced. 

The question of whether or not the NP-complete problems are intract
able is now considered to be one of the foremost open questions of contem
porary mathematics and computer science. Despite the willingness of most 
researchers to conjecture that the NP-complete problems are all intractable, 
little progress has yet been made toward establishing either a proof or a dis
proof of this far-reaching conjecture. However, even without a proof that 
NP-completeness implies intractability, the knowledge that a problem is 
NP-complete suggests, at the very least, that a major breakthrough will be 
needed to solve it with a polynomial time algorithm. 

1.6 An Outline of the Book 

Although this book is intended mainly as a primer on how to determine 
whether or not any particular problem is NP-complete (either by looking it 
up in the lists we present or by proving it yourself) , we shall also discuss 
some of the options available for dealing with a problem that is known to be 
NP-complete. A brief outline of subsequent chapters follows. 

In Chapter 2, we present the formal underpinnings of NP-completeness 
and prove Cook's theorem. The central definitions involve certain theoreti
cal concepts, such as "languages" and "Turing machines," which we 
develop in a straightforward manner, relating them to the notions of prob
lems and computer models already discussed. This chapter should give the 
reader a good understanding of the technical meaning of NP-completeness. 

I .6 AN OUTLINE OF THE BOOK 
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Chapter 3 is devoted to methods for proving a problem NP-complete. 
A number of examples are presented to illustrate the usual. structure of 

h roofs and to indicate how one goes about generating one. In 
sue P ' · II 

e one proves a new problem to be NP-complete by polynom1a Y 
essenc , . w h k NP 

d ·ng a known NP-complete problem to 1t. e survey t e nown -
re~ . d 
complete problems that have been most useful for this purpose and emon-

strate their use. . . . 
In Chapter 4, we examine the ways in . which th.e theory of NP-
leteness can be used for conducting a detailed analysts of the complex

~t~m:r a problem, seeking to determine the "boundary" between those cases 
of the problem that are polynomially solvable and those that are NP-

complete. . . 
In Chapter 5, we show how the techniques used for ~roving .~P-

mpleteness can be generalized so that problems other than JUSt dec1s1on 
c~oblems can be proved to be "as hard as" the NP-complete problems. As 
~n aid to reading the published literature on the theory of NP-completenes.s , 
we also provide a brief historical survey of the develop~ent ~f the main 
ideas and the varying tP.rminology that has been used for .d1scu~sin~ them. 

In Chapter 6, we discuss several approaches for dealing with intractable 
problems, especially that of finding near-optimal solutions using fast algo
rithms. Examples of the successes and failures of each approach are 
described, and we illustrate how the theory of NP-completeness can be ap-

plied even here. . . . 
Chapter 7 is intended to acquaint the reader with some of the theoreti-

cal issues and ideas that have arisen in parallel with the theory of NP
completeness. Among other topics we discuss the polyno,r;iial ~i~ra~ch~: 
#P-completeness, polynomial space completeness, and the relat1v1zat1on 
of the question of the intractability of the NP-complete problems. 

The last third of the book consists of the Appendix, an extensive and 
annotated list of problems known to be NP-complete or harder. The list is 
divided into sections, each devoted to problems from a particular subj~ct 
area, such as graph theory, scheduling, algebra and number theory, covering 
and partitioning, mathematical programming, program optimization, .au~o
mata and language theory, and, of course, miscellaneous topics. The hst in
cludes references to related problems known to be solvable in polynomial 
time and to problems whose status remains open in that neither polynomial 
time algorithms nor NP-completeness proofs are known for them. 


