
A SERIES OF BOOKS IN THE MATHEMATICAL SCIENCES
Victor Klee, Editor COMPUTERS AND INTRACTABILITY

A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

BELL LABORATORIES
MURRAY HILL, NEW JERSEY

rn
W. H. FREEMAN AND COMPANY

New York

Library of Congress Cataloging in Publication Data

Garey. M ichael R.
Computers and Intractabil ity.

Bibliography: p.
Includes index.
I . Eleclronic digi1al computers--Programming.

2. Algori 1hms. 3. Computa1ional complexity.
I. Johnson. David S .• joint author. II. Title.
Ill. T i1 le: NP-completeness.
QA76.6.G35 519.4 78-12361
ISBN 0-7167-1044-7
ISBN 0-7167-1045-5 pbk.

AMS Classification: Primary 68A20
Computer Science: Computational complexi1y and efficiency

Copyrigh1 I!> 1979 Bell Telephone Laboratories, Incorporated

No pan of this book may be reproduced by any
mechanical, photographic, or electron ic process. or
in the form of a phonographic recording, nor may ii
be s1ored in a ret rieva l system . transmit1ed, or
otherwise copied for public or pr iva te use. without
writ1en permission from the publisher.

Printed in the United States of America

9 IO II 12 13 14 15 VB 5 4 3 2 I 0 8 9 8 7

Contents

Preface. ix

1 Computers, Complexity, and Intractability . l

I.I Introduction . I
1.2 Problems, Algorithms, and Complexity. 4
1.3 Polynomial Time Algorithms and Intractable Problems 6
1.4 Provably Intractable Problems 11
1.5 NP-Complete Problems 13
1.6 An Outline of the Book 14

2 The Theory of NP-Completeness

2.1 Decision Problems , Languages, and Encoding Schemes .
2.2 Deterministic Turing Machines and the Class P ...
2.3 Nondeterministic Computation and the Class NP ..
2.4 The Relationship Between P and NP
2.5 Polynomial Transformations and NP-Completeness
2.6 Cook's Theorem

. 17

. 18

. 23

. 27

.32

. 34

. 38

3 Proving NP-Completeness Results 45

3.1 Six Basic NP-Complete Problems 46
3.1. l 3-SA TISFIABILITY 48
3.1.2 3-DIMENSIONAL MATCHING . . . 50
3.1.3 VERTEX COVER and CLIQUE 53
3.1.4 HAMILTONIAN CIRCUIT 56
3.1.5 PARTITION . 60

3.2 Some Techniques for Proving NP-Completeness . 63
3.2.l Restriction . 63
3.2.2 Local Replacement 66
3.2.3 Component Design . · 72

3.3 Some Suggested Exercises 74

vi CONTENTS CONTENTS
vii

4 Using NP-Completeness to Analyze Problems 77

4.1 Analyzing Subproblems 80
4.2 Number Problems and Strong NP-Completeness 90

4.2. I Some Additional Definitions 92
4.2.2 Proving Strong NP-Completeness Results 9S

4.3 Time Complexity as a Function of Natural Parameters I 06

5 NP-Hardness 109

S. I \ Turing Reducibility and NP-Hard Problems I 09
S.2 A Terminological History 118

6 Coping with NP-Complete Problems 121

6.1 Performance Guarantees for Approximation Algorithms ... 123
6.2 Applying NP-Completeness to Approximation Problems ... 137
6.3 Performance Guarantees and Behavior "In Practice" 148

7 Beyond NP-Completeness IS3

7.1 TheStructureofNP 1S4

AS Sequencing and Scheduling · · . · · · 236
AS. I Sequencing on One Processor 236
AS.2 Multiprocessor Scheduling 238
AS.3 Shop Scheduling 241
AS.4 Miscellaneous · . 243

A6 Mathematical Programming 24S
A 7 Algebra and Number Theory 249

A 7.1 Divisibility Problems 249
A 7 .2 Solvability of Equations · 2SO
A 7·3 Miscellaneous 2S2

A8 Ga~es and Puzzles 2S4
A9 Logic · . .. · · · · · · · · · · · 2S9

A9. l Propositional Logic 2S9
A9.2 Miscellaneous 261

AlO Automata and Language Theory · · . · · · 26S
AlO.l Automata Theory 26S
Al0.2 Formal Languages · · 267

Al 1 Program Optimization 272
A 11 . l Code Generation · · · 272
All.2 Programs and Schemes 27S

Al 2 Miscellaneous · · · · · · · · · · · 279
A 13 Open Problems · · · . · · · · · · · · 28S

7 .2 The Polynomial Hierarchy 161
7.3 The Complexity of Enumeration Problems 167
7.4 Polynomial Space Completeness 170

Symbol Index 289

7.S Logarithmic Space 177
7.6 Proofs of Intractability and P vs. NP 181 Reference and Author Index · · · · .. ·· · · · · · · · · 291

Appendix: A List of NP-Complete Problems 187 Subject Index 327

A I Graph Theory 190
A 1.1 Covering and Partitioning 190

Update for the Current Printing 339

A 1.2 Subgraphs and Supergraphs 194
A 1.3 Vertex Ordering 199
A 1.4 !so- and Other Morphisms 202
Al .S Miscellaneous , 203

A2 Network Design 206
A2. I Spanning Trees 206
A2.2 Cuts and Connectivity 209
A2.3 Routing Problems 211
A2.4 Flow Problems 214
A2.S Miscellaneous 218

A3 Sets and Partitions 221
A3. l Covering, Hitting, and Splitting 221
A3.2 Weighted Set Problems 223

A4 Storage and Retrieval 226
A4.1 Data Storage 226
A4.2 Compression and Representation 228
A4.3 Database Problems 232

Preface

Few technical terms have gained such rapid notoriety as the appela
tion " NP-complete." In the short time since its introduction in the early
l 970's, this term has come to symbolize the abyss of inherent intractability
that algorithm designers increasingly face as they seek to solve larger and
more complex problems. A wide variety of commonly encountered prob
lems from mathematics, computer science, and operations research are now
known to be NP-complete, and the collection of such problems continues to
grow almost daily . Indeed, the NP-complete problems are now so pervasive
that it is important for anyone concerned with the computational aspects of
these fields to be familiar with the meaning and implications of this concept.

This book is intended as a detailed guide to the theory of NP
completeness, emphasizing those concepts and techniques that seem to be
most useful for applying the theory to practical problems. It can be viewed
as consisting of three parts.

The first part, Chapters 1 through 5, covers the basic theory of NP
completeness. Chapter 1 presents a relatively low-level introduction to
some of the central notions of computational complexity and discusses the
significance of NP-completeness in this context. Chapters 2 through 5 pro
vide the detailed definitions and proof techniques necessary for thoroughly
understanding and applying the theory.

The second part , Chapters 6 and 7, provides an overview of two al
ternative directions for further study. Chapter 6 concentrates on the search
for efficient "approximation" algorithms for NP-complete problems, an area
whose development has seen considerable interplay with the theory of NP
completeness. Chapter 7 surveys a large number of theoretical tOpics in
computational complexity, many of which have arisen as a consequence of
previous work on NP-completeness. Both of these chapters (especially
Chapter 7) are intended solely as introductions to these areas, with our ex
pectation being that any reader wishing to pursue particular topics in more
detail will do so by consulting the cited references.

The third and final part of the book is the Appendix, which contains
an extensive list (more than 300 main entries, and several times this many
results in total) of NP-complete and NP-hard problems. Annotations to the
main entries discuss what is known about the complexity of subproblems
and variants of the stated problems.

x PREFACE

The book should be suitable for use as a supplementary text in
courses on algorithm design, computational complexity, operations research,
or combinatorial mathematics. It also can be used as a starting point for
seminars on approximation algorithms or computational complexity at the

·graduate or advanced undergraduate level. The second author has used a
preliminary draft as the basis for a graduate seminar on approximation algo
rithms, covering Chapters 1 through 5 in about five weeks and then pursu
ing the topics in Chapter 6, supplementing them extensively with additional
material from the references. A seminar on computational complexity
might proceed similarly, substituting Chapter 7 for Chapter 6 as the initial
access point to the literature. It is also possible to cover both chapters in a
combineci seminar.

More generally, the book can serve both as a self-study text for any
one interested in learning about the subject of NP-completeness and as a
reference book for researchers and practitioners who are concerned with al
gorithms and their complexity. The list of NP-complete problems in the
Appendix can be used by anyone familiar with the central notions of NP
completeness, even without having read the material in the main text. The
novice can gain such familiarity by skimming the material in Chapters 1
through 5, concentrating on the informal discussions of definitions and
techniques, and returning to the more formal material only as needed for
clarification. To aid those using the book as a reference, we have included a
substantial number of terms in the Subject Index, and the extensive Refer
ence and Author Index gives the sections where each reference is men
tioned in the text.

We are indebted to a large number of people who have helped us
greatly in preparing this book. Hal Gabow, Larry Landweber, and Bob Tar
jan taught from preliminary versions of the book and provided us with valu
able suggestions based on their experience. The following people read pre
liminary drafts of all or part of the book and made constructive comments:
Al Aho, Shimon Even, Ron Graham, Harry Hunt, Victor Klee, Albert
Meyer, Christos Papadimitriou, Henry Pollak, Sartaj Sahni, Ravi Sethi , Lar
ry Stockmeyer, and Jeff Ullman. A large number of researchers, too
numerous to mention here (but see the Reference and Author Index) ,
responded to our call for NP-completeness results and contributed toward
making our list of NP-complete problems as extensive as it is. Several of
our colleagues at Bell Laboratories, especially Brian Kernighan, provided in
valuable assistance with computer typesetting on the UNIX® system. Final
ly, special thanks go to Jeanette Reinbold, whose facility with translating
our handwritten hieroglyphics into faultless input to the typesetting system
made the task of writing this book so much easier.

Murray Hill, New Jersey
October, 1978

MICHAEL R. GAREY

DAVIDS. JOHNSON

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

1.1 Introduction

1

Computers, Complexity,
and Intractability

The subject matter of this book is perhaps best introduced through the
following, somewhat whimsical , example.

Suppose that you, like the authors, are employed in the halls of indus
try. One day your boss calls you into his office and confides that the com
pany is about to enter the highly competitive "bandersnatch" market. For
this reason, a good method is needed for determining whether or not any
given set of specifications for a new bandersnatch component can be met
and, if so, for constructing a design that meets them. Since you are the
company's chief algorithm designer, your charge is to find an efficient algo
rithm for doing this.

After consulting with the bandersnatch department to determine exactly
what the problem is, you eagerly hurry back to your office, pull down your
reference books, and plunge into the task with great enthusiasm. Some
weeks later, your office filled with mountains of crumpled-up scratch paper,
your enthusiasm has lessened considerably. So far you have not been able
to come up with any algorithm substantially better than searching through
all possible designs. This would not particularly endear you to your boss,
since it would involve years of computation time for just one set of

2 COMPUTERS, COMPLEXITY, AND INTRACTABILITY

specifications, and the bandersnatch department is already 13 components
behind schedule. You certainly don't want to return to his office and re
port :

" I can't find an efficient algorithm, I guess I'm just too dumb."

To avoid serious damage to your position within the company, it would
be much better if you could prove that the bandersnatch problem is in
herently intractable, that no algorithm could possibly solve it quickly. You
then could stride confidently into the boss's office and proclaim:

"I can' t find an efficient algorithm, because no such algorithm is possible!"

Unfortunately, proving inherent intractability can be just as hard as
finding efficient algorithms. Even the best theoreticians have been stymied
in their attempts to obtain such proofs for commonly encountered hard
problems. However, having read this book, you have discovered something

1.1 INTRODUCTION 3

almost as good. The theory of NP-completeness provides many straightfor
ward techniques for proving that a given problem is "just as hard" as a
large number of other problems that are widely recognized as being difficult
and that have been confounding the experts for years. Armed with these
techniques, you might be able to prove that the bandersnatch problem is
NP-complete and, hence, that it is equivalent to all these other hard prob
lems. Then you could march into your boss's office and announce:

" I can't find an efficient algorithm, but neither can all these famous people."

At the very least, this would inform your boss that it would do no good to
fire you and hire another expert on algorithms.

Of course, our own bosses would frown upon our writing this book if
its sole purpose was to protect the jobs of algorithm designers. Indeed, dis
covering that a problem is NP-complete is usually just the beginning of
work on that problem. The needs of the bandersnatch department won't
disappear overnight simply because their problem is known to be NP
complete. However, the knowledge that it is NP-complete does provide
valuable information about what lines of approach have the potential of be
ing most productive. Certainly the search for an efficient, exact algorithm
should be accorded low priority. It is now more appropriate to concentrate
on other, less ambitious, approaches. For example, you might look for
efficient algorithms that solve various special cases of the general problem.
You might look for algorithms that, though not guaranteed to run quickly,
seem likely to do so most of the time. Or you might even relax the prob
lem somewhat, looking for a· fast algorithm that merely finds designs that

4
COMPUTERS, COMPLEXITY, AND INTRACTABILITY

~eet most of the component specifications. In short, the primary applica
t1_on ~f the t_heory of NP-completeness is to assist algorithm designers in
dtrectmg their problem-solving efforts toward those approaches that have
the greatest likelihood of leading to useful algorithms.

In the first chapter of this "guide" to NP-completeness we introduce
many of t~e underlying concepts, discuss their applicability (~s well as give
some cautions), and outline the remainder of the book.

1.2 Problems, Algorithms, and Complexity

In order to elaborate on what is meant by "inherently intractable"
problems and problems having "equivalent" difficulty, it is important that
we first agree on the meaning of several more basic terms.

. Let us begin with _t he notion of a problem. For our purposes, a problem ·
will be a general question to be answered, usually possessing several param
eters,. or free _v~riables, whose values are left unspecified. A problem is
described by g1vmg: (1) a general description of all its parameters, and (2)
a sta_tement of what properties the answer, or solution, is required to satisfy.
An instance of a problem is obtained by specifying particular values for all
the problem parameters.

As an example, consider the classical " traveling salesman problem."
Th7, ~a.ra~eters of this probl_em co~~ist of a finite set C = fci.c2, ... , cm}
of c1t1es and, for each pair of c1t1es c;,c1 in C, the "distance" d(ci,c)
b~twee~ . them. A solution is an ordering < crr(l).Crr(2), ... , crr(ml > of the
given c1t1es that minimizes

[mil d(c rr(i),C,,(;+I))) + d(crr(m).Crr(I))
1- 1

This e_xpr~ssion gives the length of the "tour" that starts at c"m' visits
each city m sequence, and then returns directly to crr(I) from the last city
C,,(m)·

One instance of the traveling salesman problem illustrated in Figure
1.1, is given by C = {c"c2,c3,c4}, d(c"c2) '= IO, d(c"c) = 5,
d(c1>c4) = 9, ~(c2,c3) =. 6, d(c2,~4)_ = 9, and d(c3,c4) = 3. The ordering
<ci.c_2,~4,c3> is a solut10n for this instance, as the corresponding tour has
the mm1mum possible tour length of 27.

Algorithms are general , step-by-step procedures for solving problems.
Fo_r con~reteness, we can think of them simply as being computer programs,
written m s~me precise computer language. An algorithm is said to solve a
problem n 1f that algorithm can be applied to any instance / of n and is
guaranteed always to produce a solution for that instance /. We emphasize
that the term "solution" is intended here strictly in the sense introduced
above, so that, in particular, an algorithm does not "solve" the traveling

r
1.2 PROBLEMS, ALGORITHMS, AND COMPLEXITY 5

Figure 1.1 An instance of the traveling salesman problem and a tour of length 27,
which is the minimum possible in this case.

salesman problem unless it always constructs an ordering that gives a
minimum length tour.

In general, we are interested in finding the most "efficient" algorithm
for solving a problem. In its broadest sense, the notion of efficiency in
volves all the various computing resources needed for executing an algo
rithm. However, by the "most efficient" algorithm one normally means the
fastest. Since time requirements are often a dominant factor determining
whether or not a particular algorithm is efficient enough to be useful in
practice, we shall concentrate primarily on this single resource.

The time requirements of an algorithm are conveniently expressed in
terms of a single variable, the "size" of a problem instance, which is in
tended to reflect the amouni: of input data needed to describe the instance.
This is convenient because we would expect the relative difficulty of prob
lem instances to vary roughly with their size. Often the size of a problem
instance is measured in an informal way. For the traveling salesman prob
lem, for example, the number of cities is commonly used for this purpose.
However, an m-city problem instance includes, in addition to the labels of
them cities, a collection of m(m- 1)/2 numbers defining the inter-city dis
tances, and the sizes of these numbers also contribute to the amount of in
put data. If we are to deal with time requirements in a precise, mathemati
cal manner, we must take care to ·define instance size in such a way that all
these factors are taken into account.

To do this, observe that the description of a problem instance that we
provide as input to the computer can be viewed as a single finite string of
symbols chosen from a finite input alphabet. Although there are many
different ways in which instances of a given problem might be described, let
us assume that one particular way has been chosen in advance and that each
problem has associated with it a fixed encoding scheme , which maps problem

6 COMPUTERS, COMPLEXITY, AND INTRACTABILITY

instances into the strings describing them. The input length for an instance
I of a problem Il is defined to be the number of symbols in the description
of I obtained from the encoding scheme for II. It is this number, the input
length, that is used as the formal measure of instance size.

For example, instances of the traveling salesman problem might be
described using the alphabet {c,[,], /, 0, 1, 2, 3, 4, 5, 6, 7,8 , 9), with our pre
vious example of a problem instance being encoded by the string
"c[l]c[2]c[3]c[4]//10/ 5/ 9//6/ 9//3." More complicated instances would be
encoded in analogous fashion. If this were the encoding scheme associated
with the traveling salesman problem, then the input length for our example
would be 32.

The time complexity function for an algorithm expresses its time require
ments by giving, for each possible input length , the largest amount of time
needed by the algorithm to solve a problem instance of that size. Of
course, this function is not well-defined until one fixes the encoding scheme
to be used for determining input length and the computer or computer
model to be used for determining execution time. However, as we shall
see, the particular choices made for these will have little effect on the broad
distinctions made in the theory of NP-completeness. Hence, in what fol
lows, the reader is advised merely to fix in mind a particular encoding
scheme for each problem and a particular computer or computer model, and
to think in terms of time complexity as determined from the corresponding
input lengths and execution times.

1.3 Polynomial Time Algorithms and Intractable Problems

Different algorithms possess a wide variety of different time complexity
functions, and the characterization of which of these are "efficient enough"
and which are "too inefficient" will always depend on the situation at hand.
However, computer scientists recognize a simple distinction that offers con
siderable insight into these matters. This is the distinction between polyno
mial time algorithms and exponential time algorithms.

Let us say that a function f (n) is 0 (g (n)) whenever there exists a
constant c such that JJ(n) I ~ c-Jg(n) I for all values of n ~O. A polynomi
al time algorithm is defined to be one whose time complexity function is
O(p(n)) for some polynomial function p , where n is used to denote the in
put length. Any algorithm whose time complexity function cannot be so
bounded is called an exponential time algorithm (although it should be noted
that this definition includes certain non-polynomial time complexity func
tions, like n logn , which are not normally regarded as exponential functions).

The distinction between these two types of algorithms has particular
significance when considering the solution of large problem instances. Fig
ure 1.2 illustrates the differences in growth rates among several typical com
plexity functions of each type, where the functions express execution time

POLYNOMIAL TIME ALGORITHMS AND INTRACTABLE PROBLEMS 1.3
7

. terms of microseconds. Notice the much more explosive growth rates
10 I . f . for the two exponential comp ex1ty unctions.

- Size n

Time
complexity 10 20 30 40 50 60

function
~

.00001 .00002 .00003 .00004 .00005 .00006
n second second second second second second

-
.0001 .0004 .0009 .0016 .0025 .0036

n2
second second second second second second

.001 .008 .027 .064 .125 .216
n3

second second second second second second

.1 3.2 24.3 1.7 5.2 13.0
n s

second seconds seconds minutes minutes minutes
~

.001 1.0 17.9 12.7 35.7 366
2n

second second minutes days years centuries

.059 58 6.5 3855 2X 108 1.3xl013

3n
second minutes years centuries centuries centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity
functions.

Even more revealing is an examination of the effects of improved com
puter technology on algorithms having these time complexit?' functions.
Figure 1.3 shows how the largest problem instance ~olvable m one hour
would change if we had a computer 100 or 1000 times faster than ~ur
present machine. Observe that with the 2n algorithm a thousand-fold in

crease in computing speed only adds 10 to .the size
5
of the_ largest. pr?blem

instance we can solve in an hour, whereas with the n algorithm this size al-
most quadruples. . .

These tables indicate some of the reasons why polynomial time algo
rithms are generally regarded as being much more desirable than exponen
tial time algorithms. This view, and the distinction between the two types
of algorithms, is central to our notion of inherent intractability and to the
theory of NP-completeness. . .

The fundamental nature of this distinction was first discussed m [Cob
ham, 1964] and [Edmonds, 1965a]. Edmonds, in particular, equated poly-

8

Time
complexity
function

n

n2

n3

n5

2n

3n

COMPUTERS, COMPLEXITY, AND INTRACTABILITY

Size of Largest Problem Instance
Solvable in l Hour

With present With computer With computer
computer 100 times faster IOOO times faster

N i 100 Ni IOOO Ni

N2 IO N2 31.6 N2

N3 4.64 N3 IO N3

N4 2.5 N4 3.98 N4

Ns Ns+6.64 Ns+9.97

N6 N6 +4.19 N6+6.29

Figure 1.3 Effect of improved technology on several polynomial and exponential
time algorithms.

nomial time algorithms with "good" algorithms and conjectured that certain
integer programming problems might not be solvable by such "good" algo
rithms. This reflects the viewpoint that exponential time algorithms should
not be considered "good" algorithms, and indeed this usually is the case.
Most exponential time algorithms are merely variations on exhaustive
search, whereas polynomial time algorithms generally are made possible
only through the gain of some deeper insight into the structure of a prob
lem. There is wide agreement that a problem has not been " well-solved"
until a polynomial time algorithm is known for it. Hence, we .shall refer to
a problem as intractable if it is so hard that no polynomial time algorithm
can possibly solve it.

Of course, this formal use of "intractable" should be viewed only as a
rough approximation to its dictionary meaning. The distinction between
"efficient" polynomial time algorithms and "inefficient" exponential time
algorithms admits of many exceptions when the problem instances of in
terest have limited size. Even in Figure 1.2, the 2n algorithm is faster than
the n 5 algorithm for n .:::;; 20. More extreme examples can be constructed
easily.

Furthermore, there are some exponential time algorithms that have
been quite useful in practice. Time complexity as defined is a worst-case
measure, and the fact that an algorithm has time complexity 2n means only
that at least one problem instance of size n requires that much time. Most
problem instances might actually require far less time than that, a situation

3
POLYNOMIAL TIME ALGORITHMS AND INTRACTABLE PROBLEMS

l.
9

that appears to hold for several well-known algorithms. The simpl~x a~go-
'th for linear programming has been shown to have exponential time

ri m 973) · h · · complexity [Klee and Minty, 1972), [Zadeh, l . , but 1t as an 1mpress1ve
record of running quickly in practice. Likewise, branch-and-bound al~o-
'thms for the knapsack problem have been so successful that many cons1d

~1r it to be a "well-solved" problem, even though these algorithms, too,

have exponential time complexity.
Unfortunately, examples like these are quite rare. Although exponen-

tial time algorithms are known for many problems, few of them ~re :egard
ed as being very useful in practice. Even the successful exponenlla~ t1~e al
gorithms mentioned above have not stopped re~earchers from contmumg to
search for polynomial time algorithms for solving those pro?l~ms . In fact,
the very success of these algorithms has led to the susp1c10n that they
somehow capture a crucial property of the problems whose refinement could
lead to still better methods. So far, little progress has been i:na.de t?ward
explaining this success, and no method~ are ~nown fo: pre~1ctmg ~n ad
vance that a given exponential time algori thm will run quickly m practice.

On the other hand, the much more stringent bounds on execution time
satisfied by polynomial time algorithms often permit such predictions to be

. h . . 1 't 100 1099n2 made. Even though an algorithm avmg ttme comp ext Y n or .
might not be considered likely to run quickly in practice, t.he. polynom1a~ly
solvable problems that arise naturally tend to be solvable w1thm polynomial
time bounds that have degree 2 or 3 at worst and that do not involve ex
tremely large coefficients. Algorithms satisfying such bounds can be con
sidered to be "provably efficient," and it is this much-desired property that
makes polynomial time algorithms the preferred way to solve problems.

Our definition of " intractable" also provides a theoretical framework of
considerable generality and power. The intractability of a problem turns out
to be essentially independent of the particular encoding scheme and com
puter model used for determining time complexity.

Let us first consider encoding schemes. Suppose for example that we
are dealing with a problem in which each instance is a graph G = (.V,E),
where V is the set of vertices and E is the set of edges, each edge being an
unordered pair of vertices. Such an instance might be described (see Figure
l.4) by simply listing all the vertices and edges, or by listing the rows of the
adjacency matrix for the graph, or by listing for each vertex all the other
vertices sharing a common edge with it (a "neighbor" list) . Each of these
encodings can give a different input length for the same graph. However, it
is easy to verify (see Figure 1.5) that the input lengths they determine
differ at most polynomially from one another, so that any algorithm having
polynomial time complexity under one of these encoding schemes also will
have polynomial time complexity under all the others. In fact, the standard
encoding schemes used in practice for any particular problem always seem
to differ at most polynomially from one another. It would be difficult to
imagine a " reasonable" encoding scheme for a problem that differs more

10 COMPUTERS, COMPLEXITY, AND INTRACTABILITY

than polynomially from the standard ones. Although what we mean here by
"reasonable" cannot be formalized, the following two conditions capture
much of the notion:

(1) the encoding of an instance I should be concise and not "pad
ded" with unnecessary information or symbols, and

(2) numbers occurring in I should be represented in binary (or de-
cimal, or octal, or in any fixed base other than 1).

If we restrict ourselves to encoding schemes satisfying these conditions,
then the particular encoding scheme used should not affect the determina
tion of whether a given problem is intractable.

Encoding Scheme String Length

Vertex list, Edge list V[l)V[2)V[3]V[4] (V[l]V[2]) (V[2]V[3]) 36

Neighbor list (V[2])(V[I]V[3])(V[2])() 24

Adjacency matrix rows 0100/1010/0010/0000 19

Figure 1.4 Descriptions of the graph G = (V,E) where V = {Vi. V2, V3, V4) and
E = { {Vi. V2) , { V2, V3)), under three different encoding schemes.

Encoding Scheme Lower Bound Upper Bound

Vertex list, Edge list 4v + lOe 4v + lOe + (v+2e)·rlog10vl

Neighbor list 2v + 8e 2v + 8e + 2e · rlog10vl

Adjacency matrix v2 + v - 1 v2 + v - 1

Figure 1.5 General bounds on input lengths for the three encoding schemes of
Figure 1.4 for graphs G = (V,E) with I VI= v, 1£1 = e. Since e < v2,

these show that the input lengths differ at most polynomially from each
other. crxl denotes the least integer not less than x.)

Similar comments can be made concerning the choice of computer
models. All the realistic models of computers studied so far, such as one
tape Turing machines, multi-tape Turing machines, and random-access
machines (RAMs), are equivalent with respect to polynomial time complex
ity (for example, see Figure 1.6). One would expect any other "reason
able" model to share in this equivalence. The notion of "reasonable" in-

PROVABLY INTRACTABLE PROBLEMS
J.4

11

d d here is essentially that there is a polynomial bound on the amount of
ten : that can be done in a single unit of time. Thus, for ex~mpl~, a model
wor. the capability of performing arbitrarily many operat10ns m par~Llel
havilndg t be considered " reasonable " and indeed no existing (or planned)
wou no , . I

h S this capability At any rate so long as we restrict ourse ves to
computer a · ' .

d rd models of realistic computers the class of intractable problems
the stan a '
will be unaffected by the par~icular ~ode\ use~ , ~nd we can . ma~~ our
choice on the basis of convenience without sacnficmg the appltcab1hty of

our results.

Simulating machine A

Simulated machine B lTM kTM RAM

1-Tape Turing Machine (lTM) - O(T(n)) O(T(n}logT(n)}

k-Tape Turing Machine (kTM) O(T2(n)) - O(T(n)logT(n))

Random Access Machine (RAM) O(T3(n)) O(T2(n)) -

Figure 1.6 Time required by machine A to simulate the execution of an algorithm
of time complexity T(n) on Machine B (for example, see [Hopcroft
and Ullman, 1969] and [Aho, Hopcroft, and Ullman, 1974]) .

1.4 Provably Intractable Problems

Now that we have discussed the formal meaning of "intractable prob
lem," it is appropriate that we briefly survey the current state of knowledge
about the existence of intractable problems.

It is useful to begin by distinguishing between two different causes of
intractability allowed by our definition. The first, which is the one we us~
ally have in mind, is that the problem is so difficult that an e.xponent1al
amount of time is needed to discover a solution. The second is. that t.he
solution itself is required to be so extensive that it c.annot b~ descnbed. with
an expression having length bounded by a polynomial function of the input

length. 1· This second cause occurs, for example, in the variant of the trave mg
salesman problem that includes a number B as an additi?nal parameter and
that asks for all tours having total length B or less. It 1s easy to construct
instances of this problem in which exponentially many tours are sho~ter
than the given bound, so that no polynomial time algorithm could possibly

list them all. . . .
Intractability of this sort is by no means insignificant, a~d it ~s 1mpo:-

tant to recognize it when it occurs. However, in most cases its existence is

12 COMPUTERS, COMPLEXITY, AND INTRACTABILITY

apparent from the problem definition. In fact, this type of intractability can
be regarded as a signal that the problem is not defined realistically, because
we are asking for more information than we could ever hope to use. Thus,
from now on we shall restrict our attention to the first type of intractability.
Accordingly, only problems for which the solution length is bounded by a
polynomial function of the input length will be considered.

The earliest intractability results for such problems are the classical un
decidability results of Alan Turing. Over 40 years ago, Turing demonstrated
that certain problems are so hard that they are "undecidable," in the sense
that no algorithm at all can be given for solving them. He proved, for ex
ample, that it is impossible to specify any algorithm which, given an arbi
trary computer program and an arbitrary input to that program, can decide
whether or not the program will eventually halt when applied to that input
[Turing, 1936]. A variety of other problems are now known to be undecid
able, including the triviality problem for finitely presented groups [Rabin,
1958), Hilbert's tenth problem (solvability of polynomial equations in in
tegers) [Matijasevic, 1970], and several problems of "tiling the plane"
[Berger, 1966]. Since these undecidable problems cannot be solved by any
algorithm, much less a polynomial time algorithm, they indeed are intract
able in an especially strong sense.

The first examples of intractable " decidable" problems were obtained
in the early l 960's, as part of work on complexity "hierarchies" by Hart
manis and Stearns (1965]. However, these results involved only "artificial"
problems, specifically constructed to have the appropriate properties. It was
not until the early 1970's that Meyer and Stockmeyer [1972], Fischer and
Rabin [1974] , and others finally succeeded in proving some "natural" de
cidable problems to be intractable. These include a variety of previously
studied problems from automata theory, formal language theory, and
mathematical logic. In fact, the proofs show that these problems cannot be
solved in polynomial time using even a "nondeterministic" computer
model, which has the ability to pursue an unbounded number of indepen
dent computational sequences in parallel. We shall see that this "unreason
able" computer model plays an important role in the theory of NP
completeness, and its capabilities will be specified more fully in Chapter 2.

All the provably intractable problems known to date fall into the two
categories we have just mentioned. They are either undecidable or "non
deterministically" intractable. However, most of the apparently intractable
problems encountered in practice are decidable and can be solved in poly
nomial time with the aid of a nondeterministic computer. Thus, none of
the proof techniques developed so far is powerful enough to verify the ap
parent intractability of these problems.

1.5 NP-COMPLETE PROBLEMS 13

t.5 NP-Complete Problems

As theoreticians continue to seek more powerful methods for proving
problems int~actable, parallel eff ?rts focus on ~earning more a_bo_ut t~e ways
in which vanous problems are interrelated with respect to their difficulty.
As we suggested earlier, the discovery of such relationships between prob
lems often can provide information useful to algorithm designers.

The principal technique used for demonstrating that two problems are
related is that of " reducing" one to the other, by giving a constructive
transformation that maps any instance of the first problem into an
equivalent instance of the second. Such a transformation provide_s the
means for converting any algorithm that solves the second problem mto a
corresponding algorithm for solving the first problem.

Many simple examples of such reductions have been known for some
time. For example, Dantzig [1960] reduced a number of combinatorial op
timization problems to the general zero-one integer linear programming
problem. Edmonds [1962] reduced the graph theoretic problems of " cover
ing all edges with a minimum number of vertices" and "finding a max
imum independent set of vertices" to the general " set covering problem."
Gimpel [1965] reduced the general set covering problem to the "prime im
plicant covering problem" of logic design. Dantzig, Blattner, and Rao
[1966] described a "well-known" reduction from the traveling salesman
problem to the "shortest path problem" with negative edge lengths allowed.

These early reductions, although rather isolated and limited in scope,
foreshadow the kind of results proved in the theory of NP-completeness.

The foundations for the theory of NP-completeness were laid in a paper
of Stephen Cook, presented in 1971 , entitled "The Complexity of Theorem
Proving Procedures" [Cook, 197la] . In this brief but elegant paper Cook
did several important things.

First, he emphasized the significance of "polynomial time reducibility ,"
that is reductions for which the required transformation can be executed by
a poly~omial time algorithm. If we have a polynomial time reduction from
one problem to another, this ensures that any polynomial time algorithm for
the second problem can be converted into a corresponding polynomial time
algorithm for the first problem.

Second he focused attention on the class NP of decision problems that
can be solv~d in polynomial time by a nondeterministic computer. (A deci
sion problem is one whose solution is either "yes" or "no".) Most of the
apparently intractable problems encountered in practice, when phrased as
decision problems, belong to this class.

Third, he proved that one particular problem in NP, called the
"satisfiability" problem, has the property that every other problem in NP
can be polynomially reduced to it. If the satisfiability problem can be solved
with a polynomial time algorithm, then so can every problem in NP, and if
any problem in NP is intractable, then the satisfiability problem also must

14 COMPUTERS, COMPLEXITY, AND INTRACTABILITY

be intractable. Thus, in a sense, the satisfiability problem is the " hardest"
problem in NP.

Finally, Cook suggested that other problems in NP might share with
the satisfiability problem this property of being the " hardest" member of
NP. He showed this to be the case for the problem " Does a give n graph G
contain a complete subgraph on a given number k of vertices?"

Subsequently, Richard Karp presented a collection of results [Karp,
1972) proving that indeed the decision problem versions of many well
known combinatorial problems, including the traveling salesman problem,
are just as "hard" as the satisfiability problem. Since then a wide variety of
other problems have been proved equivalent in difficulty to these problems,
and this equivalence class, consisting of the " hardest" problems in NP, has
been given a name: the class of NP-complete problems.

Cook's original ideas have turned out to be remarkably powerful. They
have provided the means for combining many individual complexity ques
tions into the single question: Are the NP-complete problems intractable?
The lists included in the Appendix of this book contain literally hundreds of
different problems now known to be NP-complete. As more and more
problems of independent interest are shown to belong to this equivalence
class, its importance is continually reinforced.

The question of whether or not the NP-complete problems are intract
able is now considered to be one of the foremost open questions of contem
porary mathematics and computer science. Despite the willingness of most
researchers to conjecture that the NP-complete problems are all intractable,
little progress has yet been made toward establishing either a proof or a dis
proof of this far-reaching conjecture. However, even without a proof that
NP-completeness implies intractability, the knowledge that a problem is
NP-complete suggests, at the very least, that a major breakthrough will be
needed to solve it with a polynomial time algorithm.

1.6 An Outline of the Book

Although this book is intended mainly as a primer on how to determine
whether or not any particular problem is NP-complete (either by looking it
up in the lists we present or by proving it yourself) , we shall also discuss
some of the options available for dealing with a problem that is known to be
NP-complete. A brief outline of subsequent chapters follows.

In Chapter 2, we present the formal underpinnings of NP-completeness
and prove Cook's theorem. The central definitions involve certain theoreti
cal concepts, such as "languages" and "Turing machines," which we
develop in a straightforward manner, relating them to the notions of prob
lems and computer models already discussed. This chapter should give the
reader a good understanding of the technical meaning of NP-completeness.

I .6 AN OUTLINE OF THE BOOK
15

Chapter 3 is devoted to methods for proving a problem NP-complete.
A number of examples are presented to illustrate the usual. structure of

h roofs and to indicate how one goes about generating one. In
sue P ' · II

e one proves a new problem to be NP-complete by polynom1a Y
essenc , . w h k NP

d ·ng a known NP-complete problem to 1t. e survey t e nown -
re~ . d
complete problems that have been most useful for this purpose and emon-

strate their use. . . .
In Chapter 4, we examine the ways in . which th.e theory of NP-
leteness can be used for conducting a detailed analysts of the complex

~t~m:r a problem, seeking to determine the "boundary" between those cases
of the problem that are polynomially solvable and those that are NP-

complete. . .
In Chapter 5, we show how the techniques used for ~roving .~P-

mpleteness can be generalized so that problems other than JUSt dec1s1on
c~oblems can be proved to be "as hard as" the NP-complete problems. As
~n aid to reading the published literature on the theory of NP-completenes.s ,
we also provide a brief historical survey of the develop~ent ~f the main
ideas and the varying tP.rminology that has been used for .d1scu~sin~ them.

In Chapter 6, we discuss several approaches for dealing with intractable
problems, especially that of finding near-optimal solutions using fast algo
rithms. Examples of the successes and failures of each approach are
described, and we illustrate how the theory of NP-completeness can be ap-

plied even here. . . .
Chapter 7 is intended to acquaint the reader with some of the theoreti-

cal issues and ideas that have arisen in parallel with the theory of NP
completeness. Among other topics we discuss the polyno,r;iial ~i~ra~ch~:
#P-completeness, polynomial space completeness, and the relat1v1zat1on
of the question of the intractability of the NP-complete problems.

The last third of the book consists of the Appendix, an extensive and
annotated list of problems known to be NP-complete or harder. The list is
divided into sections, each devoted to problems from a particular subj~ct
area, such as graph theory, scheduling, algebra and number theory, covering
and partitioning, mathematical programming, program optimization, .au~o
mata and language theory, and, of course, miscellaneous topics. The hst in
cludes references to related problems known to be solvable in polynomial
time and to problems whose status remains open in that neither polynomial
time algorithms nor NP-completeness proofs are known for them.

