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Abstract

An on-line algorithm is one that receives a sequence of requests and performs an
immediate action in response to each request. On-line algorithms arise in any situa-
tion where decisions must be made and resources allocated without knowledge of the
future. The effectiveness of an on-line algorithm may be measured by its competitive
ratio, defined as the worst-case ratio between its cost and that of a hypothetical off-
line algorithm which knows the entire sequence of requests in advance and chooses
its actions optimally. In a variety of settings, we discuss techniques for proving upper
and lower bounds on the competitive ratios achievable by on-line algorithms. In par-
ticular, we discuss the advantages of randomized on-line algorithms over deterministic
ones.
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1 Introduction

1.1 On-Line Algorithms Versus Off-Line Algorithms

An on-line algorithm is one that receives a sequence of requests and, performs an immediate
action in response to each request. Each sequence of requests and corresponding actions
has an associated cost.

On-line algorithms arise in many different settings. For example, in the case of on-line
bin packing each request is an object to be packed, and the corresponding action is to pack
the object in some bin. In the context of a database system each request may be a query
or an update, and the corresponding action involves retrieving data from, and possibly
modifying, the database. In an investment situation, a request might consist of a price
quotation for a commodity, and the action might be to buy or sell some amount of the
commodity.

On-line algorithms may be contrasted with off-line algorithms, which receive the entire
sequence of requests in advance; an off-line algorithm is required to take an action in
response to each request, but the choice of each action can be based on the entire sequence
of requests. In other words, an off-line algorithm knows the future, but an on-line algorithm
does not. It is clear that, in many settings, ignorance of the future is a great disadvantage
(think of stock market investment, for example). Thus, on-line algorithms will often perform
much worse than their off-line counterparts.

It is easy to say what is meant by an optimal off-line algorithm; for each sequence
of requests, such an algorithm selects that sequence of actions which minimizes the cost.
Defining a measure of performance for on-line algorithms is more problematic, since it is
usually the case that, whatever actions an on-line algorithm takes in response to an initial
sequence of requests, there will be a sequence of further requests that makes the algorithm
look foolish. It is perhaps because of this difficulty in defining “rational” or “optimal”
performance that on-line algorithms have been relatively neglected in fields like computer
science, operations research and economics. For example, scheduling theory has focused on
off-line models, which assume, often inappropriately, that the entire stream of jobs arriving
at a service facility is known in advance.

The most common approach to evaluating on-line algorithms is to assume a specific
stochastic model of the source of requests. Within such a model, an on-line algorithm may
be considered optimal if it chooses its actions so as to minimize the expected cost, where
the cost depends on the sequence of requests generated by the stochastic source and on the
sequence of actions chosen by the algorithm in response to these requests. Much of the
theory of stochastic games, stochastic control, stochastic scheduling, performance analysis
of computer systems and probabilistic analysis of algorithms is based on this approach.
However, the choice of a stochastic model requires data that may not be readily available
about the request sequences that have been observed in the past, as well as faith that the
future will resemble the past.

1.2 The Competitive Ratio

This paper is concerned with an alternative to stochastic models - a worst-case approach in
which an on-line algorithm is evaluated by comparing its cost with that of an optimal off-



line algorithm processing the same sequence of requests. We follow [ST], which defines the
competitive ratio of an on-line algorithm as the maximum, over all possible input sequences,
of the ratio between the cost incurred by the on-line algorithm and the cost incurred by
an optimal off-line algorithm. An optimal on-line algorithm is then one whose competitive
ratio is least. The concept of competitive ratio is related to the minimax regret concept
in game theory, and we shall often view the situation as a game between an on-line player
who selects the on-line algorithm and an adversary who chooses the request sequence to
maximize the ratio between the algorithm’s cost and that of an optimal off-line algorithm.

One virtue of the competitive ratio approach is that it avoids commitment to a particular
stochastic model. However, the approach is a pessimistic one, since it assumes, in effect,
that the request sequence will be chosen by an all-knowing adversary. Ideally, what we
would probably like in practice is an on-line algorithm that performs well on typical request
sequences and also has a small competitive ratio, so that its behavior can never be too
catastrophic.

Let us define the setting more rigorously. An on-line problem is specified by:

e A set R of requests;
o A set A of actions;
® A cost function ¢ : U,—; 5  R" x A™ — R+, where R+ denotes the nonnegative reals.

For any request sequence r € R", define Opt(r) as min,e 4» c(r, a).

An on-line algorithm A is determined by a function f4 : Rt — A, where R* is the
set of all finite nonempty sequences of requests. In response to a sequence of requests
T = T1,72,...,7¢ the algorithm performs the sequence of actions A(r) = fa(r1), fa(rirs),
-++sfalrira...r¢) and incurs the cost ¢(r,.A(r)). Note that, by this definition, an on-
line algorithm is deterministic. In Section 4 we will extend the definition to encompass
randomized on-line algorithms.

For any positive constant d, the on-line algorithm A4 is said to be d-competitive if there
exists a constant b such that, for all request sequences r, c(r, A(r)) < dOpt(r) +b. The
competitive ratio of A is defined as the greatest lower bound of the set of ¢ such that A is
c-competitive. Some authors use a variant of these definitions, in which b is required to be
ZEero.

In the following sections we shall explore what is known about the construction of on-line
algorithms with an optimal competitive ratio.

2 Some Examples

2.1 The Ski Rental Problem

To illustrate the concept of competitive ratio L. Rudolph introduced the ski rental problem.
Suppose the cost of renting a pair of skis for a ski trip is 1, and the cost of buying a pair of
skis is s. Not knowing how many ski trips we will take, how do we decide whether to rent
or buy? Here there is only one possible request (“Take ski trip”) and three possible actions
(“rent”, “buy” and “use skis already bought”), with costs 1, ¢ and 0, respectively, where
the third action can be invoked only if the second action has occurred previously. Clearly,
any sensible on-line algorithm is of the form “rent for the first k trips, then buy, then use
the skis already bought.” On a sequence of t requests, the cost incurred by the algorithm
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is ¢t if t < k and k + s otherwise, and the cost incurred by an optimal off-line algorithm is
min(s, t).

The problem is to choose the parameter k to minimize the competitive ratio. For a given
k, a request sequence of length k+1 maximizes the ratio between the on-line algorithm’s cost
and that of an optimal off-line algorithm. In other words, the adversary should continue
the ski trips until the on-line algorithm buys a pair of skis, and then stop. The on-line
algorithm’s cost on such a sequence is k + s, the optimal off-line cost is min(k + 1, s), and
the competitive ratio is ﬁ'{ﬂ%—sy Assuming that s is an integer, the competitive ratio is

minimized by setting k = s — 1, thus achieving a competitive ratio of 2‘%‘1. One way to
view this is that the on-line player should rent until enough ski trips have occurred so that,

by hindsight, he would have done better to buy skis initially.

2.2 Paging

Consider a computer system which has a fast memory with capacity for k pages of data
and a slow memory with unlimited capacity. A set of n pages is to be kept in storage at
all times, where n > k; at any given time, k pages will reside in the fast memory, and the
other n — k will reside in the slow memory. When a program requests access to a page that
lies in the slow memory a page fault is said to occur; a vacancy must then be created by
evicting some page from the fast memory, and the requested page must be brought into the
vacant position.

The goal of an on-line paging algorithm is to minimize the number of page faults that
occur; on-line algorithms differ in the choice of a page to evict when a page fault occurs.
In terms of our formalism, there are n possible requests, corresponding to the n pages in
the system, n actions of the form “evict page 1,” and a “no op” action. The cost function
is designed to charge 1 for each page fault; in addition, invalid actions such as evicting a
page that does not lie in the fast memory or responding to a page fault with a no op action
incur an infinite cost.

Following [ST] we shall show that no deterministic algorithm can have competitive
ratio less than k. To do so we exhibit an adversary strategy; i.e., a rule which, given
any deterministic on-line paging algorithm .4, constructs arbitrarily long “bad” request
sequences. In the present case the adversary strategy is obtained by restricting attention to
a set S of k + 1 pages and producing an infinite request sequence which causes A to incur
a page fault after every request. The sequence is obtained by simulating A and, at each
step, requesting a page in S that does not lie in fast storage. On the other hand, for any
sequence of requests drawn from S, an off-line algorithm can use its knowledge of the future
to ensure that at least k requests occur between any two consecutive page faults; whenever
a page fault occurs, the off-line algorithm evicts that page in fast storage for which the next
request is furthest off in the future. It follows that .4 does not achieve a competitive ratio
less than k.

It is easy to construct an on-line paging algorithm that is k-competitive. We challenge
the reader to do so.

2.3 List Processing

The paper [ST] considers the problem of maintaining a data structure consisting of a linear
list of n items. Each request is of the form “Access z, ” where z is an item. The cost of
accessing a given item is equal to its position in the current list. When the item in position
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t is requested there are i possible actions, corresponding to moving the item forward any
number of positions between 0 and i — 1; there is no extra cost for this forward motion.

Sleator and Tarjan ([ST]) prove that Move-to-Front - the algorithm that moves each item
to the front of the list whenever it is accessed - is 2-competitive. The proof is instructive
because it involves the important concept of a potential function. Imagine that, as requests
are received, the Move-to-Front algorithm and Opt, the optimal off-line algorithm (aided
by its knowledge of future requests), process the requests and maintain their lists of the n
items. At any step, let p be Move-to-Front’s list and let ¢ be Opt’s list. At a step in which
the two lists coincide any access request will cause the two algorithms to incur the same
cost. Thus, Opt has the potential to outperform Move-to-Front only when the lists differ.
This observation suggests defining a potential function ®(p,q) which measures the extent
to which the two lists differ, and hence the potential for Opt to outperform Move-to-Front.
In this case it is best to define ®(p,¢) as the number of adjacent interchanges of items
needed to pass from the list p to the list g. It is then easy to show that, at each step,
Con + A® < 2copf, where c,n and cof, respectively, denote the cost incurred by Move-to-
Front and by Opt at the step, and A® denotes the change in potential at the step. It then
follows by simple algebra, from the fact that ® is nonnegative and initially zero, that for
any request sequence the cost incurred by Move-to-Front is at most twice that incurred by
Opt.

It is also possible to prove that no deterministic on-line algorithm can achieve a com-
petitive ratio less than 2. The reader is invited to provide the required adversary argument.

The field of dynamic data structures provides a great deal of scope for the study of
on-line algorithms. In particular, the paper [ST1] introduces the splay-tree algorithm for
executing sequences of insertions, deletions and accesses to a binary search tree. Assuming
that each operation of following or changing a pointer has unit cost, Sleator and Tarjan
conjecture that the splay-tree algorithm has a bounded competitive ratio, and prove the
conjecture in some interesting special cases.

2.4 Multiprocessor Scheduling

In the multiprocessor scheduling problem each request is a task of a given size, and each
action is to assign the current task to one of m processors. The cost of a sequence of requests
and actions is the makespan, defined as the maximum, over all processors, of the sum of the
sizes of the tasks assigned to the processor. In [Gra], Graham considers a natural on-line
algorithm called Low. At each step, Low assigns the current task to the most lightly loaded
processor; i.e., the one for which the sum of the sizes of the assigned tasks is least. Graham
shows that the competitive ratio of Low is 2 — % A worst-case request sequence consists
of m(m — 1) tasks of size 1 followed by a task of size m; for this example Low achieves a
makespan of 2m — 1, and the optimal makespan is m.

For m = 2 and m = 3 Low achieves the smallest competitive ratio of any on-line
algorithm. For m = 3 the competitive ratio of Low is 5/3, and the following simple case
analysis shows that no on-line algorithm can beat 5/3. Suppose the first three tasks to
arrive are of size 1. They must be packed on distinct processors; if not, the sequence could
end and the algorithm would be paying twice the optimal cost. If the next three tasks
are of size 3 then, again, they must be assigned to distinct processors; if not, the sequence
could end and the algorithm would be paying 7/4 of the optimal makespan. Thus, after the
arrival of the first six tasks, the sum of the sizes of the tasks assigned to each processor is 4.
If the next task is of size 6 then, however it is assigned, the makespan is 10. On the other



hand, one can easily see that the optimal makespan for all seven tasks is 6. This completes
the proof that the competitive ratio of an on-line algorithm for m = 3 is at least 5/3.

The worst case for Low occurs when all processors are equally loaded and a large task
arrives. Intuitively, it seems that a better competitive ratio can be achieved by avoiding the
case of equal loading and, instead, keeping the loads on the processors somewhat staggered.
Pursuing this idea, [BFKV] gives an algorithm whose competitive ratio is bounded above by
a universal constant less than 2, for all m; thus, when m is sufficiently large, this algorithm
has a better competitive ratio than Low.

2.5 Interval Coloring

As a final introductory example we consider the interval coloring problem, in which each
request is an interval on the real line and each action assigns a color to the current request.
No two overlapping intervals may receive the same color. The cost of a sequence of requests
is the number of colors used. This problem can be interpreted as a scheduling problem,
in which each interval represents the time span of some task, and the color represents the
processor assigned to execute the task. Kierstead and Trotter [KT] give an on-line algorithm
with optimal competitive ratio for this problem. As each interval I arrives it is assigned a
positive integer h(I) called its height and a color as follows:

e If I does not intersect any previous interval of height 1 then h([I) is set equal to 1;
otherwise, h([I) is set equal to the least j > 1 such that I does not intersect more than
two previous intervals of height j.

e One color is reserved for intervals of height 1, and, for each j > 1, three colors are
reserved for each height j; interval I is assigned any color, among those reserved for
its height, that has not been assigned to any previous interval that intersects I.

If k is the maximum height assigned to any interval then:
e The Kierstead-Trotter algorithm uses at most 3k — 2 colors;

e There is a set of £k mutually intersecting intervals; thus, any algorithm requires at
least k colors.

It follows that, if the optimal number of colors is k, then the Kierstead-Trotter on-line
algorithm will require at most 3k — 2 colors. It can be shown by means of an adversary
argument that, for any online algorithm, and any k, there exists an instance for which the
optimal number of colors required is k but the algorithm requires 3k — 2 colors. Thus, the
Kierstead-Trotter algorithm is an optimal on-line algorithm.

3 The k-Server Problem

In this section we discuss the most thoroughly studied of all on-line problems - the famous
k-server problem of Manasse, McGeoch and Sleator([MMS]). The problem is set in a metric
space; i.e., a set of points M together with a distance function d, defined for each pair =,y
of points in M, and satisfying

e d(z,y) = d(y,z) (symmetry) and
e d(z,2) <d(z,y) + d(y, z) (triangle inequality).



The execution of an on-line algorithm for the k-server problem begins with k servers located
at given points in the metric space. Each request is a point in the space, and each action
causes one of the k servers to move to the most recent request point. The cost of the action
is the distance moved by the server. A server remains stationary unless it is selected to
move to a request point. The paging problem with n pages and a fast memory of size k
can be viewed as the special case of the k-server problem in which the metric space has n
points and the distance between any two distinct points is 1.

Many natural algorithms for the k-server problem fail to achieve a bounded competitive
ratio. For example, consider the following greedy algorithm: *“Answer each request by
moving the closest server.” In any metric space where arbitrarily small positive distances
occur, the greedy algorithm can be defeated by placing requests alternately at two points
that are sufficiently close together. The greedy algorithm will build up an unbounded cost
by shuttling the same server back and forth forever, but, on the same request sequence, an
optimal off-line algorithm will keep its cost bounded by stationing a server permanently at
each of the two points.

3.1 The Manasse-McGeoch-Sleator Lower Bound

In [MMS] it is shown that, in any metric space with at least k + 1 points, no on-line
algorithm for the k-server problem has competitive ratio less than k. The proof is by an
adversary argument that generalizes the one given above for the paging problem. One
can assume without loss of generality that the k servers are initially located at distinct
points. The adversary restricts attention to the k initial server locations plus one additional
point. The adversary then constructs an infinite request sequence by requesting, at each
step, the unique point among these k + 1 that the on-line algorithm A does not have
covered by a server. If the successive requests occur at ry,72,...,7¢,... then A incurs cost
d(ri,r2) + d(ra,r3) + ... + d(re, 7e41) in processing the first ¢ requests. The rest of the
proof consists of showing that, if an off-line algorithm is free to choose the initial positions
of its servers, then it can restrict its cost for processing these same t requests to at most
d(r"r2)+d(r"’r“}c)+"'+d("’r‘"“). Since the initial positions of the servers only affect the cost of
an optimal off-line algorithm by a constant, it follows that .4 does not achieve a competitive
ratio less than k.

In [MMS] Manasse, McGeoch and Sleator conjecture that this lower bound is tight; i.e.,
that for every metric space M, and every k, there is a k-competitive on-line algorithm for the
k-server problem. At present we are very far from proving or disproving this conjecture. As
we shall discuss in Section 4.4, a much weaker related conjecture has been proven: for every
k, and every metric space, there is a (k(%2k — 2))2-competitive on-line algorithm for the
k-server problem; this result shows that a bounded competitive ratio is always achievable.

3.2 The k-Server Problem on a Tree

The Manasse-McGeoch-Sleator conjecture has been proven for k = 2, for the k-server
problem in any metric space with k + 1 points, and for certain special metric spaces. For
example, [CL1] gives a k-competitive on-line algorithm for the k-server problem on a treelike
road network. By “treelike road network” we mean a topological tree in which every arc
is a Jordan curve, the metric space is the set of points in the union of these arcs, and the
distance between two points is the length of the unique path joining them. At a typical step
the k servers are located at points of the road network and a request occurs at some point
. All servers begin moving toward z at the same rate. Each server s continues moving



along the path from itself to x until it becomes blocked by some other server; i.e., until
some other server occupies the closed path between z and the current position of 5. A tie,
in which two servers occupy the same point at the same time, is broken arbitrarily. This
algorithm technically violates the rules of the game, since more than one server moves at a
time. However, the algorithm is easily converted to one in which only one server moves at a
time and the total distance traveled by servers is no greater than in the original algorithm.
The idea is that, since only one server actually reaches the request point, each of the other
servers can simply calculate the “virtual motion” that it would have carried out under the
original algorithm, and execute an actual move only when a virtual motion brings it to the
current request point.

To prove that their algorithm is k-competitive Chrobak and Larmore devise a potential
function ®(p, q), where p is a k-tuple of points giving the positions of the on-line algorithm’s
servers, and ¢ is a k-tuple of points giving the positions of the off-line algorithm’s servers.
The function ® has the following properties:

e At each step of the off-line algorithm, ® increases by at most k times the cost of the
step;

o At each step of the on-line algorithm, ® decreases by at least the cost of the step.

These two properties, together with the fact that ® is nonnegative and initially zero, prove
that, on any given request sequence, the cost incurred by the on-line algorithm is at most
k times the cost incurred by the off-line algorithm.

4 The Power of Randomization

Adversary constructions are the principal means of proving lower bounds on the competitive
ratio achievable for a given problem. To prove that the competitive ratio C is not achievable
such a construction takes as input an arbitrary deterministic on-line algorithm A for the
problem and produces an infinite family R of request sequences such that, as the length of
the sequence r € R increases, the ratio ﬂc%(‘% eventually exceeds every number less than C.
The construction usually depends on the ability to simulate A. This suggests consideration
of randomized on-line algorithms, which toss coins in the course of their execution. It seems
that the unpredictability of such randomized algorithms should make it more difficult for
an adversary to construct bad request sequences. In this section we consider the question
of whether randomized on-line algorithms are more powerful than deterministic ones.

We may view a randomized algorithm as playing a game against a deterministic adver-
sary. In each play of the game the adversary chooses the request sequence £ =71,72,...,"n
and its own sequence of actions b = by, bs,...,bn, and the on-line algorithm chooses its
sequence of actions @ = a1,a2,...,8,. Since the on-line algorithm is randomized the se-
quence of actions it chooses may vary, even when the adversary’s behavior remains fixed.
For a positive constant C, the on-line algorithm is said to be C—competitive if, for every
adversary,

E[c(z,a) — Cc(r, b)]

is bounded above by a constant.

4.1 Types of Adversaries

To complete our definition of the game between the randomized on-line algorithm and the
adversary we must specify the information available to each player when it makes each of
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its decisions. It is always assumed that the adversary knows the text of the randomized
on-line algorithm; however,the adversary does not have access to the algorithm’s random
coin tosses. Three different types of adversaries are indicated schematically below:

e The Oblivious Adversary
r1(b1)(a1)r2(b2)(az) . ..

e The Adaptive On-Line Adversary
ri(b1)aira(b2)as. ..

e The Adaptive Off-Line Adversary
riajreas. .. ‘f’nﬂ.nblbz ‘e bn

Here the left-to-right sequence indicates the time sequence of the requests and actions, and
parentheses indicate actions that are kept secret. Thus, the advantage of the adaptive
on-line adversary over the oblivious adversary is that it gets to observe the actions of the
on-line algorithm. The adaptive off-line adversary has the further advantage that it gets to
observe all the algorithm’s actions before choosing any of its own actions.

Against deterministic on-line algorithms all three adversary types are of equivalent
power; there is no advantage to observing the on-line algorithm’s actions, since the ad-
versary can compute these actions by simulating the algorithm. Against randomized on-
line algorithms the adaptive off-line adversary type is clearly the most powerful, and the
oblivious adversary type is the least powerful. The competitive ratio that is achievable will
depend on the adversary type considered.

The paper [BBKTW] proves the following theorems:

Theorem 1 If there is a C-competitive randomized algorithm against adaptive off-line ad-
versaries, then there is a C-competitive deterministic algorithm; in other words, there is no
advantage to randomizing when playing against adaptive off-line adversaries.

Theorem 2 If there is a C-competitive randomized algorithm against oblivious adversaries
and a D-competitive randomized algorithm against adaptive on-line adversaries, then there
1s a CD-competitive deterministic algorithm.

It follows that the best competitive ratio achievable by a randomized algorithm against
adaptive on-line adversaries is at least the square root of the best competitive ratio achiev-
able by a deterministic algorithm.

4.2 Example: The Paging Problem

Recall that, for the paging problem, the best competitive ratio achievable by a deterministic
on-line algorithm is k. It can be shown ([FKLMSY], [MS]) that the best competitive ratio
achievable against oblivious adversaries is Hy = 1+ 1/2 + ... + 1/k, whereas, against
adaptive on-line or off-line adversaries, the best competitive ratio is k. Thus, for this
problem, randomized algorithms are more powerful than deterministic ones against oblivious
adversaries, but not against adaptive adversaries.



4.3 Example: Bipartite Matching

A matching in a graph is a set of edges, no two of which meet at a common vertex. A
bipartite graph is one in which the vertex set is the union of two disjoint sets, often referred
to as the boys and the girls, such that each edge joins a boy with a girl. We consider an
on-line version of the problem of constructing a large matching in a bipartite graph. In this
version the boys arrive one-by-one. As each boy arrives the algorithm is told which edges
are incident with the boy, and chooses at most one of these edges to be included in the
matching; of course, the algorithm is not permitted to choose two edges incident with the
same girl.

We must change the definition of competitive ratio to account for the fact that we are
dealing with a maximization problem rather than a minimization problem. Let us say that a
randomized algorithm is C-competitive against a type of adversary if, for every adversary of
that type, the expected size of the matching produced by the algorithm, minus C times the
expected size of the matching produced by the adversary, is bounded below by a constant;
the competitive ratio of an algorithm is the least upper bound of the C’s for which it is
C-competitive.

The best competitive ratio achievable by a deterministic algorithm for this problem is
1/2. An adversary can hold any deterministic algorithm to 1 /2 by repeating the following
two-step cycle: present a boy who is adjacent to two girls; whichever girl the algorithm
chooses, present a second boy who is adjacent to that girl, but not to the other one. This
will limit the algorithm to matching only half the boys, even though there exists a matching
that covers all the boys.A more complicated argument shows that the best competitive ratio
achievable by a randomized on-line algorithm against adaptive on-line adversaries is also
12

It is shown in [KVV] that the best competitive ratio achievable by a randomized on-line
algorithm against oblivious adversaries is 1 —1/e, where e is the base of natural logarithms.
The algorithm that achieves this ratio is simple to state, but not so easy to analyze: choose
a random ordering of the girls and, as each boy arrives, match him with the first girl, if
any, who is incident with him and has not been chosen before. The adversary strategy that
limits every randomized on-line algorithm to a competitive ratio of 1— 1/e is also simple: let
there be n boys and n girls; choose a random ordering g1, g2, - - - , gn of the girls, and make
the first boy adjacent to all the girls, the second boy, to g1,92,..-,9n-1 and, in general,
make the ith boy adjacent to gi1,92,...,gn—i+1- In other words, the girls drop out in a
random order.

This example illustrates what seems to be a rather general phenomenon: randomization
helps considerably against oblivious adversaries, but not against adaptive adversaries. A
good exercise for the interested reader is to confirm that this phenomenon also holds for
the ski rental problem and the list processing problem presented in Section 2.

4.4 The Harmonic Algorithm for the k-Server Problem

It seems that a good on-line algorithm for the k-server problem should tend to favor servers
that are close to the request point. On the other hand, the simple greedy algorithm, which
always chooses the closest server, is easily foiled by an adversary because of its predictability,
and fails to achieve a bounded competitive ratio. In this section we discuss a randomized
on-line algorithm called the Harmonic Algorithm which behaves in a way that is intuitively
reasonable, and yet contains enough randomness to present difficulty to an adversary. The
Harmonic Algorithm is defined by the property that, each step, the probability that a given
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server is the one to move is inversely proportional to that server’s distance from the request
point.

Call an adaptive on-line adversary lazy if, whenever possible, it requests a point that is
occupied by one of its servers but not occupied by one of the on-line algorithm’s servers.
The behavior of an on-line algorithm against a lazy adversary is relatively simple since,
at any given step, there is at most one vacancy that is occupied by one of the adversary’s
servers but not by one of the algorithm’s servers. Thus, one can analyze the movement of
a single vacancy rather than many servers.

It is possible to show that, in any metric space, the Harmonic Algorithm is ﬂ%ﬂl-
competitive against all lazy adversaries. Since lazy behavior on the part of an adversary
seems reasonable, this leads to the conjecture that, in any metric space, the Harmonic
Algorithm is M%l-conrlpet'.it‘.ive against all adaptive on-line adversaries. However, the best
result proven so far is that the Harmonic Algorithm is k(4§2" — 2)-competitive against
adaptive on-line adversaries ([Gro]). It follows from Theorem 2 that, in any metric space,
there exists a (k(52% — 2))2-competitive deterministic on-line algorithm.

To prove his upper bound on the competitive ratio of the Harmonic Algorithm Grove
gives an ingenious construction of a potential function ®(p, ¢), where p is the configuration
of the algorithm’s servers and ¢ is the configuration of the adversary’s servers, such that:

e At any step in which the adversary incurs a cost of D, ® increases by at most Dk( 2—2" —

2);

e At any step of the on-line algorithm, the expected decrease in @ is greater than or
equal to the expected cost of the step.

A further reason for interest in the Harmonic Algorithm stems from the work of Cop-
persmith, Doyle, Raghavan and Snir on resistive metric spaces. A metric space is called
resistive if there exists an electric network with a node for each point in the space, such
that the distance between any two points is equal to the resistance across the corresponding
node pair in the network. In [CDRS] it is shown that, in any resistive metric space, a
variant of the Harmonic Algorithm achieves a competitive ratio of k against all adaptive
on-line adversaries. It follows that, in any resistive metric space, there is a k?-competitive
deterministic on-line algorithm.

5 Conclusion

On-line algorithms arise in any situation where decisions must be made and resources al-
located with incomplete knowledge of the future. Typical settings include robot motion
planning, investment analysis, bin packing, storage allocation, cache management, file mi-
gration, scheduling, graph coloring, maintenance of data structures and databases, facilities
location and capacity expansion of networks. In all of these areas, interesting mathemat;i-
cal arguments have yielded lower and upper bounds on the competitive ratios that can be
achieved. Lower bound proof usually depend on adversary constructions, and upper bounds
are usually obtained by analyzing algorithms with the help of potential functions.

In connection with each particular application, a question arises as to whether the
competitive ratio of an algorithm is likely to be correlated with its performance in practice.
Unfortunately, it is far from clear that this is the case. The use of the competitive ratio
as a performance measure is roughly equivalent to assuming that request sequences are
being generated by a devilish adversary with unlimited computational power and complete
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knowledge of the algorithm he is trying to foil. This paranoid view is hard to justify. A
challenge for the future is to restrict the adversary or strengthen the on-line algorithm
in some way, without retreating all the way to the classical assumption that the request
sequences are generated by a fixed stochastic source. Some work along these lines has
already been done: [BIRS] considers the paging problem under natural restrictions on the
pairs of page requests that can occur consecutively in a request sequence, and [Ir] considers
on-line graph coloring with natural restrictions on the type of graph that can be presented,
while [CGS] considers the effect of giving the on-line algorithm the ability to look ahead
some distance into the request sequence. In other applications it may be reasonable to
restrict the adversary’s computational power or to assume that, instead of getting to choose
each request separately, the adversary, knowing the on-line algorithm, gets to choose a
simple deterministic or randomized algorithm for generating the request sequence; the on-
line algorithm then faces the task of inferring the adversary’s request generation algorithm
without incurring too much extra cost. Yet another approach is to mix competitive analysis
with average-case analysis by looking for on-line algorithms which not only have a small
competitive ratio, but also perform well against “typical” request sequences.
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