Lecture 16
Image Segmentation

The basic concepts of segmentation
Point, line, edge detection

Thresh holding

Region-based segmentation
Segmentation with Matlab
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What Is segmentation

 What is segmentation

— Segmentation subdivides an image into its constituent regions or
objects, until the objects of interest in an application have been
Isolated.

e Segmentation conditions
R,,...R

n

(a) LnJ R =R
i=0
(b) R isaconnected seti=12,...,n
(c) RnR; =S foralliandj, 1= j
(d) Q(R,) =true fori=12,...,n
(e) Q(R; UR,) = false for any adjacent regions R; and R,
where Q(R.) is a logical predicate defined over the points in set R, .

e Segmentation problem: to partition the image into
regions satisfying above conditions



Two principal approaches

e Edge-based segmentation
— partition an image based on abrupt changes in intensity (edges)

 Region-based segmentation

— partition an image into regions that are similar according to a set
of predefined criteria.

FIGURE 10.1 (a)Image containing a region of constant intensity. (b) Image showing the
boundary of the inner region, obtained from intensity discontinuities. (c) Result of
segmenting the image into two regions. (d) Image containing a textured region.
(e) Result of edge computations. Note the large number of small edges that are
connected to the original boundary, making it difficult to find a unique boundary using
only edge information. (f) Result of segmentation based on region properties.
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Detection of Discontinuities

o Detect the three basic types of gray-level discontinuities
— points , lines , edges
 Use the image sharpening techniques

— The first order derivatives produce thicker edges

— The second order derives have a strong response to fine detall,
such as thin lines and isolated points, and noise

— Laplasian operation
e (Can be done by running a mask through the image
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Point Detection

Steps for point dection IR

1. Apply Laplacian filter to the image
to obtain R(X, y) ~

2. Create binary image by threshold

1, if |[R(x,y)>T
0, otherwise

g(x,y)={

where T is a nonnegative threshold




Example
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FIGURE 10.2

(a) Point
detection mask.
(b) X-rav image
of a turbine blade
with a porosity.
(c) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)



Line Detection

« A special mask is needed to detect a special type of line

 Examples:

— Horizontal mask has high response when a line passed through
the middle row of the mask.

—1 —1 —1 2 —1 —1 —1 2 —1 —1 —1 2

Horeonlal +45° Vertieal —445°



Multiple Lines Detection

* Apply every masks on the image, find the maximum response.

Example:

Let R1, R2, R3, R4 denotes the response of the horizontal, +45 degree,
vertical and -45 degree masks, respectively. if, at a certain point in the
image |R;| > |Ry, for all j=, that point is said to be more likely associated
with a line in the direction of mask I.

a
bc
FIGURE 10.4




Edge Detection

« Edge detection is the approach for segmenting
Images based on abrupt changes In intensity.

 What Is an edge

— an edge is a set of connected pixels that lie on the boundary
between two regions.

— an edge is a “local” concept whereas a region boundary, owing
to the way it is defined, is a more global idea.

 Edge models
— Step edge (Idea edge), ramp edge (thick edge), and roof edge

abc
FIGURE 10.8

From left to right,
‘ models (ideal

— representations) of
a st.ep. aramp, and
a roof edge, and
— their corresponding

intensity profiles.




Example of edges in an image

 An image may all the three types of edges

FIGURE 10.9 A 1508 X 1970 image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)



First and Second derivatives at the edge

B | : | am

Horizontal intensity FIGURE 10.10
profile (a) Two regions of
constant intensity

separated by an
ideal vertical
First ramp edge.
derivative (b) Detail near

tlan adoan ola vewrdan o
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a horizontal
intensity profile,
- Second yp i

derivative together with its
first and second
derivatives.
Zero crossing J

1. The magnitude of the first derivative can be used to detect the
presence of an edge at a point

2. Second derivative produces two values for every edge in an image.
An imaginary straight line joining the extreme positive and negative
values of the second derivative would cross zero near the midpoint
of the edge. zero-crossing point: the center of thick edges
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Noise Images

 First column: images and gray- / |
level profiles of a ramp edge / S
corrupted by random Gaussian // ‘

noise of mean 0 and c = 0.0, = =

0.1, 1.0 and 10.0, respectively. ‘ . .-

e Second column: first-derivative
Images and gray-level profiles.

e Third column : second- ‘
/
Jf/

derivative images and gray-
level profiles.




Steps In edge detection

1. Image smoothing for noise reduction
2. Detection of edge points. Points on an edge
3. Edge localization



Image gradient

« Gradient is a vector of |
gx ax
VT = =
M o
Oy |

e The magnitude of the gradient

M(X, y):mag(Vf):\/gf+g§ _\/(Z_]:(j (2:/]

 The direction of the gradient vector

a(X,y)=tan" {gy}
g

X

e The direction of an edge at (X, y) is perpendicular to the direction
of the gradient vector at that point



Example

i
e

Gradient vefctor Gradient vector
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FIGURE 10.12 Using the gradient to determine edge strength and direction at a point.
Note that the edge is perpendicular to the direction of the gradient vector at the point
where the gradient is computed. Each square in the figure represents one pixel.
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vi=l 5 1=l 5 M(x,y) =242,
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a(X,y)=tan"(-2/2) = —45°




Gradient Operators and Masks

gx=—gf — f(x+Ly)— (% Y)
X

of

Nt y+D) - f(x,
g, & X, y+1)-1f(x,y)

Roberts cross-gradient operators

g _oxy)
X 8X - 49 5
_of(xy)

y — A, %87 ‘e

oy

Prewitt operators

of
Oy :&:(Z7+28+Z9)_(21+22+Z3)

of
g, :_:(23+26+29)_(21+Z4+Z7)

Sobel operators
of

g, :&:(27+228+zg)—(21+222+23)

of
g, :5:(23+226+29)—(zl+224+z7)

ab

FIGURE 10.13 -1
One-dimensional

masks used to
implement Egs. 1
(10.2-12) and
(10.2-13).
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FIGURE 10.14

A 3 X 3 region of
an image (the z’s
are intensity
values) and
various masks
used to compute
the gradient at
the point labeled
Zs.
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Prewitt and Sobel masks for Diagonal edges

Sobel masks have
slightly superior
noise-suppression
characteristics which
Prewitt IS an important issue
when dealing with
derivatives.

Sobel
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FIGURE 10.16

(a) Original image
of size

834 X 1114 pixels,
with intensity
values scaled to
the range [0, 1].
(D) |8, the
component of the
gradient in the
x-direction,
obtained using
the Sobel mask in
Fig. 10.14(f) to
filter the image.
(c) |18/, obtained
using the mask in
Fig. 10.14(g).

(d) The gradient
image, |8x| + |&|.
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Example

FIGURE 10.17
Gradient angle
image computed
using

Eq. (10.2-11).
Areas of constant
intensity in this
image indicate
that the direction
of the gradient
vector is the same
at all the pixel
locations in those
regions.
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FIGURE 10.18
Samc scgucence as
in Fig. 10.16, but
with the original
image smoothed
usingad X 3
averaging filter
prior to edge
detection.
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ab

FIGURE 10.19
Diagonal edge
detection.

(a) Result of
using the mask in
Fig. 10.15(c).

(b) Result of
using the mask in
Fig. 10.15(d). The
input image in
both cases was
Fig. 10.18(a).



Laplacian

Laplacian operator 2 2
sz — a f(X,Y)_I_a f(X,Y)

OX° oy °

Vi =[f(x+1Ly)+ f(x=1Y)
+ (X, y+1)+ f(x,y=-1)—-41(x,y)]

FIGURE 10.13

Laplacian masks 0 -1 0 —1 —1 -1
used to

implement

Eqs. (10.1-14) and - 4 - - 8 -
(10.1-15),

]'C‘!'S]'!"L‘CH‘».-'C[}'. 0 -1 0 -1 -1 -1




Laplacian of Gaussian

« Laplacian combined with smoothing as a precursor to
find edges via zero-crossing.

xP+y?
G(x,y)=e 27
0°G 0°G
+

ViG(X,y) =

2 2 2 x*+y?
{x +y°—-20 }e_ 52

4
(o2

g(x,y)=VG(x,y)* f(x,y0

Zero crossing —\

—

/— Zero crossing

NP

0 -1 -2 | -1 0
-1 -2 16 -2 | -1
0 -1 -2 | -1 0
0 0 -1 0 0
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FIGURE 10.21

(a) Three-
dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
crossings.

(d) 5 X 5 mask
approximation to
the shape in (a).
The negative of
this mask would
be used in
practice.

23



Marr-Hildreth edge detection algorithm

1. Filter the input with an n by an Gaussian lowpass filter
2. Compute the Laplacian of the image of step 1

3. Find the zero crossing of the image from step
Approximate the zero crossing from LoG image to threshold the LoG image by
setting all its positive values to white and all negative values to black. the zero
crossing occur between positive and negative values of the thresholded LoG.

ab
cd

FIGURE 10.22

(a) Original image
of size 834 X 1114
pixels, with
intensity values
scaled to the range
[0, 1]. (b) Results
of Steps 1 and 2 of
the Marr-Hildreth
algorithm using

o =4andn = 25.
(c) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).

(d) Zero crossings
found using a
threshold equal to
4% of the
maximum value of
the image in (b).
Note the thin
edges.




Zero crossing vs. Gradient

o Attractive
— Zero crossing produces thinner edges
— Noise reduction

 Drawbacks
— Zero crossing creates closed loops. (spaghetti effect)
— sophisticated computation.

e Gradient is more frequently used.



Example

a). Original image
b). Sobel Gradient
c). Spatial Gaussian
smoothing function
d). Laplacian mask
e). LoG

f). Threshold LoG
g). Zero crossing
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Edge Linking and Boundary Detection

e An edge detection algorithm are followed by linking
procedures to assemble edge pixels into meaningful
edges.

e Basic approaches
— Local Processing
— Global Processing via the Hough Transform
— Global Processing via Graph-Theoretic Techniques



Local Processing

 Analyze the characteristics of pixels in a small neighborhood S,,
(say, 3x3, 5x5) about every edge pixels (X, y) in an image.

« All points that are similar according to a set of predefined criteria are
linked, forming an edge of pixels that share those criteria.

e Criteria M (s,t) =M (x,y) |< E
where E is a positive threshold
|la(s,t)—a(X, y) <A
where Ais a positive angle threshold
» Algorithm steps

1.compute VI, M (X, y), a(X, y)
2.Form a binary image g(x, y) = {1’ M (x,y)>Ty and a-(x, V)= ALT,

0, otherwise
3.Scan the rows of g and fill all gaps ineach tow that do not exceed a specified
length K
4. Detect the gap in any direction @, rotate g by this angle and apply the horizontal

scanning procedure in Step 3. Rotate the result by -



Example of local precessing

Gap =25

magnitude

,TA =45,

90

FIGURE 10.27 (a) A 534 X 566 image of the rear of a vehicle. (b) Gradien
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Hough Transformation (Line)
~b ab

\ |
|
\ b= —xa+y, FIGURE 10.31
a (xi, yi) \:/ (a) xy-plane.
| (b) Parameter
\ , I space.
o L
-
\. (X5 yj-) \

b= —x;a + y;
A '
X a

y; =ax; + b = -ax; +y;

~t

all points (x; ,y;) contained on the same line must have lines in
parameter space that intersect at (a’,b’)

30



- 0’ -0 Hminl | | 0 | | fjmaxl -0
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abc

FIGURE 10.32 (a) (p, 8) parameterization of line in the xy-plane. (b) Sinusoidal curves in the p#-plane; the
point of intersection (p’, ') corresponds to the line passing through points (x;, y;) and (x;, y;) in the xy-plane.
(c) Division of the pf-plane into accumulator cells.

« problem of using equation y — ax + b is that value of a is infinite for a
vertical line.

« To avoid the problem, use equation x cos &+ y sin 8= pto represent a
line instead.

« vertical line has =90 °with p equals to the positive y-intercept or =
-90 °with p equals to the negative y-intercept
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—100

0

[

100

a
b

FIGURE 10.33

(a) Image of size
101 X 101 pixels,
containing five
points.

(b) Corresponding
parameter space.
(The points in (a)
were enlarged to
make them easier
to see.)



Generalized Hough Transformation

The method can be used for any function of the form

g(v, ¢c) = 0, where v is a vector of coordinates, c is a vector
of coefficients

Example: circles, (x-c,)? + (y-C,)? = C4°
(c,, C,, C3) cube like cells, accumulators of the form A(i, J, k)
Increment ¢, and ¢, , solve of c, that satisfies the equation

update the accumulator corresponding to the cell associated
with triplet (c,, c,, C,)



Edge-linking based on Hough Transformation

1. Compute the gradient of an image and threshold it to
obtain a binary image.

2. Specify subdivisions in the p6-plane.

3. Examine the counts of the accumulator cells for high
pixel concentrations.

4. Examine the relationship (principally for continuity)
between pixels in a chosen cell.

Continuity:

1. based on computing the distance between
disconnected pixels identified during traversal of the
set of pixels corresponding to a given accumulator cell.

2. agap at any point is significant if the distance between
that point and its closet neighbor exceeds a certain
threshold.



Example

ab
cde

FIGURE 10.34 (a) A 502 X 564 aerial image of an airport. (b) Edge image obtained using Canny’s algorithm.
(c) Hough parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in
the image plane corresponding to the points highlighted by the boxes). (e) Lines superimposed on the
original image.



MEGE THETA ] POS THETA

link criteria:

1). the pixels belonged to one of the set of pixels linked

according to the highest count
2). no gaps were longer than 5 pixels

ab

c d

FIGURE 10.21

(a) Infrared
image.

(b) Thresholded
oradient image.
(¢) Hough
transform.

(d) Linked pixels.
(Courtesy of Mr.
D. R. Cate, Texas
[nstruments, Inc.)
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Image Segmentation ||

Threshold

Region-based segmentation
Segmentation using watersheds
Segmentation with Matlab
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Thresholding

 Problem: how to determine the threshold value of
segmentation?

* Histogram

ab

FIGURE 10.35
Intensity
histograms that
can be partitioned
(a) by a single
threshold, and

(b) by dual
thresholds.

1
g(x, y)={O

“ll | ||‘|
T

CAFf(X,y)>T
CFE(X, YY) ST

a, |ff(x y)>T,
g(x,y)=<b, If T, < (X, y)<T,
c, Iff(x,y)<T,



The role of noise in Image thresholding

 When noise is small, the method work, otherwise it may
not work. Noise reduction has to be done before
choosing threshold value

abc

255 |0 (%) 127 191 255
de f

FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard
deviation of 10 intensity levels. (c¢) Image with additive Gaussian noise of mean 0 and standard deviation of
50 intensity levels. (d)—(f) Corresponding histograms.



The Role of lllumination

lllumination plays an important role
f(x.y) = 1(xy) r(x.y)

Approach:

19(x,y) = Ki(x,y)

2h(xy) = txy)a(xy) = r(xy)/k

& 3

. ’ ‘"L A H (il H “rl\l.l.. +

FIGURE 10. 37 e. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b).
(d)—(f) Cor S.

'-O/-'\



Basic Global Thresholding

Based on visual inspection of histogram

1.
2.

o B

Select an initial estimate for T.

Segment the image using T. This will produce two
groups of pixels: G, consisting of all pixels with gray
level values > T and G, consisting of pixels with gray
level values <T

Compute the average gray level values m; and m, for
the pixels in regions G, and G,

Compute a new threshold value T=0.5 (m; + m,)

Repeat steps 2 through 4 until the difference in T In
successive iterations is smaller than a predefined
parameter T,.



Basic Global Thresholding

Use T midway between the max and min gray levels
generate binary image

FIGURE 10.38 (a) Noisy fingerprint. (b) Histogram. (¢) Segmented result using a global threshold (the border
was added for clarity). (Original courtesy of the National Institute of Standards and Technology.)

T,=1, 3 iterations, result T = 125



Optimum global thresholding

Choose thresholding values that maximize the between-class variance
Otsu’s method
1. Compute the normalized histogram of the image P,1=012...L-1

2. Computer the cumulative sums ~ m(k)=>ip,k=012,..,L-1
3. Computer the cumulative mean pl(k):i:ipi,k:o,u ,,,,, L1

4. Computer the global intensity mean, m:oziipi,k=0,l2,...,L—l
5. Compute the between-class variance =0

ol (k) = [P, (k) — m (k)1 k=012,..,L-1
P (K)[1- P (k)]
6. Obain the Otsu thereshold
k™ the average of all k such that o} (k) = mex{aé(k)}
7. Compute the separability measure
._og (k)

n = 2
Og




Example

127

191

255
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cd

FIGURE 10.39

(a) Original
image.

(b) Histogram
(high peaks were
clipped to
highlight details in
the lower values).
(c) Segmentation
result using the
basic global
algorithm from
Section 10.3.2.
(d) Result
obtained using
Otsu’s method.
(Original image
courtesy of
Professor Daniel
A. Hammer, the
University of
Pennsylvania.)



Example

0 , 127 191

abec
de f

FIGURE 10.40 (a) Noisy image from Fig. 10.36 and (b) its histogram. (c) Result obtained using Otsu’s method.
(d) Noisy image smoothed usinga 5 X 5 averaging mask and (e) its histogram. (f) Result of thresholding using
Otsu’s method.



Example

0 63 127 191 255

0 63 127 191 255

abc
de f

FIGURE 10.41 (a) Noisy image and (b) its histogram. (c¢) Result obtained using Otsu’s method. (d) Noisy
image smoothed using a 5 X 5 averaging mask and (e) its histogram. (f) Result of thresholding using Otsu’s
method. Thresholding failed in both cases.



Using edges to improve global thresholding

Compute the edge image g(x, y) of f(x, y)

Specify a threshold value T of g(x, y)

Threshold the image f(x, y) using T, obtain g.(x, y)
Compute a histogram of f(x, y) using pixels (x, y) with

gi(x,y) =1
5. Use the above histogram to segment f(x,y) globally.

> w N



Example

127 191 255

LA L
127 191 255

abc
de f

FIGURE 10.42 (a) Noisy image from Fig. 10.41(a) and (b) its histogram. (c) Gradient magnitude image
thresholded at the 99.7 percentile. (d) Image formed as the product of (a) and (c). (¢) Ilistogram of the
nonzero pixels in the image in (d). (f) Result of segmenting image (a) with the Otsu threshold based on the
histogram in (e). The threshold was 134, which is approximately midway between the peaks in this histogram.



Multiple thresholding

Otsu’s method can be extended to arbitrary number of thresholds.

1. Compute the normalized histogram of the image P/ =012,..,L-1

2. Computer the cumulative sums — p =%"p. m ILZiPnCy---,CK are classes
3. Computer the cumulative mean <Gy k 1<C

K

mG — Z Pimilaé(kl""’kK) —

i=1

Pi[mi B mG]2

1M

4. Obain theresold

K, ...k, such that o2 (k,,....kg_,) = m;’iX{O'é(kl oo ke )}
5. Threshold image ) X
a, iff(x,y)<k;

T0x.y) = 12 if k< f(x,y) <k,

La, iff(x,y)> kg



Example

< o 63 127 101

abc

FIGURE 10.45 (a) Image of iceberg. (b) Histogram. (c) Image segmented into three regions using dual Otsu
thresholds. (Original image courtesy of NOAA..)



Basic Adaptive Thresholding

e Subdivide original image into small areas.
o Utilize a different threshold to segment each subimages.

 The threshold used for each pixel depends on the
location of the pixel in terms of the subimages.



Example : Adaptive Thresholding

a b

B

FIGURE 10.30
(a) Original
image. (b) Result
of global
thresholding.
(¢) Image
subdivided into
individual
subimages.

(d) Result of
adaptive
thresholding.




2. Region-Based Segmentation

 Basic Formulation

(a) _k_JlRi =R
(b) R.Isaconnected region,i =1, 2,...,n

(c) R R, =¢ foralliand j,1 = ]
(d) P(R) = TRUE fori =1, 2,..,n
(¢) P(RiUR;) = FALSE fori = ]

P(R) is a logical predicate property defined over the points in set R

ex. P(R) = TRUE if all pixel in R, have the same gray level



Two basic approaches

 Region Growing
— start with a set of “seed” points

— growing by appending to each seed those neighbors that have
similar properties such as specific ranges of gray level

e.g
(TRUE if the absolute difference of the

Intensites between the seed and
the pixel at (x,y) is <T
| FALSE otherwise

e Region splitting and merging
— lIteratively divide a region into smaller regions until all regions
become TRUE
— Merge adjacent regions as along as the resulting region is still
TRUE



Region Growing

Select all seed points with gray level 255

criteria:

1. the absolute gray-
level difference
between any pixel
and the seed has to
be less than 65

2. the pixel has to be 8-
connected to at least
one pixel in that
region (if more, the
regions are merged):-:

de f
gh i

FIGURE 10.51 (a) X-ray image of a defective weld. (b) Histogram. (c) Initial seed image. (d) Final seed image
(the points were enlarged for clarity). (¢) Absolute value of the difference between (a) and (c). (f) Histogram
of (e). (g) Difference image thresholded using dual thresholds. (h) Difference image thresholded with the
smallest of the dual thresholds. (i) Segmentation result obtained by region growing. (Original image courtesy
of X-TEK Systems, Ltd.)

o



Region splitting and merging

Quadtree
1. Splitinto 4 disjoint quadrants any region R; for which
P(R,) = FALSE
2. Merge any adjacent region R; and R, for which
P(R,v R,)=TRUE
3. Stop when no further merging or splitting is possible.
ab
FIGURE 10.52
(a) Partitioned
image.
R Ry (b)
Corresponding
Ry | Ru quadtree. R
R; < A p ( represents the
Ryz | Ry Ry Ry ) Ry Ry entire 1mage
<_/) \_/ {\_ \_> region.




Example am
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FIGURE 10.53

(a) Image of the
Cygnus Loop
supernova, taken
in the X-ray band
by NASA’s
Hubble Telescope.
(b)—(d) Results of
limiting the
smallest allowed
quadregion to
sizes of

32 X 32,16 X 16,
and 8 X 8 pixels,
respectively.
(Original image
courtesy of

_{TRUE ifo>aand O<m<b NASA.)

FALSE otherwise

where m and o the mean and standard deviation
of pixels in a quadregion



Example

abc

FIGURE 10.43

(a) Original
image. (b) Result
of split and merge
procedure.

{(¢) Result of
thresholding (a).

%

L3

P(R)) = TRUE If at least 80% of the pixels in R; have the
property |zi-m;| < 2c;,
where

z; is the gray level of the j™ pixel in R,

m; Is the mean gray level of that region

o; IS the standard deviation of the gray levels in R,
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Segmentation using Watersheds

 The concept of watersheds
— View an image as 3-D graphics
— Three types of points
e Local minimum

e Point at which water will flow to a local minimum,
also called catchment basin, or watershed.

« Point at which water can equally flow to more than
one local minimum points, also called divide lines,
or watershed lines

« Segmentation by watershed lines



Example

ab
cd

FIGURE 10.54

(a) Original image.
(b) Topographic
view. (c)—(d) Two
stages of flooding.



(Continued)

(e) Result of
further flooding.
(f) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them). (g) Longer
dams. (h) Final
watershed
(segmentation)
lines.

(Courtesy of Dr. S.
Beucher,
CMM/Ecole des
Mines de Paris.)

.E.yaqr?".-'-n-f**w«ﬂ . FIGURE 10.54
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Watershed algorithm

Let M,,M,,..., M be sets denoting the coordinates of the reginoal
minima of image g(x, y). C(M.) is the set of pixels of catchment
basin of M,
T[n]={(s,t)| g(s,t) <n},n=min+1to max+1
C,(M;)=C(M;)nT[n]
Q[n] denotes the set of connected components of M.
For n=min+1to max+1do
For each connected component g of Q[n]
IfgNnC[n-1]=9
Let C[n]« C[n-1]uq
else if g~ C[n—1] contains one connected component of C[n—1]
C[n] <« C[n-1]uqg
else g N C[n—1] contains more than one components of C[n—1]
The build dam within g



Dam construction

3

FIGURE 10.55 (a) Two partially flooded catchment basins at stage n — 1 of flooding.
(b) Flooding at stage n, showing that water has spilled between basins. (c) Structuring
€
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Example
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FIGURE 10.57

(a) Electrophoresis
image. (b) Result
of applying the
watershed
segmentation
algorithm to the
gradient image.
Oversegmentation
is evident.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)
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FIGURE 10.56

(a) Image of blobs.
(b) Image gradient.
(c) Watershed lines.
(d) Watershed lines
superimposed on
original image.
(Courtesy of Dr.

S. Beucher,
CMM/Ecole des
Mines de Paris.)
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FIGURE 10.58 (a) Image showing internal markers (light gray regions) and external
markers (watershed lines). (b) Result of segmentation. Note the improvement over Fig.
10.47(b). (Courtesy of Dr. S. Beucher, CMM/Ecole des Mines de Paris.)



