Digital Image Fundamentalis Il

1. Image modeling and representations
2. Pixels and Pixel relations
3. Arithmetic operations of images
4. Image geometry operation
5. Image processing with Matlab
- Image Processing Toolbox (IPT)



1. Image modeling and representation

A 2D image is a function of any quantity over a finite
spatial extent:

(X, y)
X, < X< X,

y1=YsY;

« The value of f(x, y,) can be real number, integer, or 0,1

— Continuous space image: x and y are chosen as real numbers
— Discrete space: x and y are chosen as integers



Digital images in discrete space

« 2D digital image

- x=0,...,M-1,y=0, ..., N-1, and f(x, y) are integers in binary
format of 8 bits, 16 bits (or d bits).

— (i, j) is pixel, f(x, y) is its pixel or intensity

— Resolution: M x N, i.e. number of pixels

— Size:M xNxd
i.e., the total number of bits to represent the image

— Represented as a matrix

f (0,0) £(0,1) .. f(O,M-1)

f (1,0 f (1,1 f(L,M -1
| f@O T LM -1

f(N-1,0) f(N-11) .. f(N-LM-1)



Pixel coordinate and spatial coordinate

The Pixel Coordinate System The Spatial Coordinate System
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For color image, f(x, y) is triple of integers:

f(Xy)=(z,(X,¥), 2,(X, ¥), Z;(X, ¥))
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Component image 3 (Blue)

Component image 2 (Green)

Component image 1 (Red)



One-Dimensional Image

« 1D image is a function

f(x), X <X<X,

* One-dimensional (1D) image can be represented as a
sequence of numbers:

x(n),n=0,1,....M -1

« Graphical representation



Image representation

« A 1D image of one point
1, x=0
o(X) =
0,x=0

* Represent image of discrete domain by continuous
image function.

x(n),n=0,1,...,N -1

* Representation in continuous domain

X (X) :Nzlx(n)5(x—n),—oo < X< oo

n=0



Image representation

« 2D image of one point

1,(x,y)=(0,0)
0,(x,y)#(0,0)

* Represent image of discrete domain by continuous
image function.

f(x,y),x=0,1,....,M -1,y=0,1,....N -1

o (X, y)={

-1 N-1

F(X,y) = F(x,y)o(x=1,y—-]J),

=0 =0

—00 < X<00,-0< Y <



2. Relations of pixels

« Neighbors of a pixel p at (x, )

4-neighbors of p:
N4(p) ={ (X+1’ y)’ (X'1 ,y),(X,y+1 )’ (X’y'1 )}

4-diagonal neighbors of p:
Np(p) = { (x+1, y+1), (x+1,y-1),(x-1,y+1), (x-1,y-1)}

8-neighbors of p :

Ng(P) = Ny(p) U Np(p)



Connectivity

Let V be the set of gray-level values used to defined connectivity

4-connectivity : 2 pixels p and g with values from V are 4-connected
if g is in the set N4(p)

8-connectivity : 2 pixels p and q with values from V are 8-connected
if g is in the set Ng(p)

m-connectivity (mixed connectivity): 2 pixels p and g with values
from V are m-connected if q is in the set N,(p), or q is in the set
Np(p) and the set N,(p)\N,(q) is empty. (the set of pixels that are 4-
neighbors of both p and q whose values are from V)



Adjacent, path and connected component

« Adjacent: a pixel p is adjacent to a pixel q if they are
connected

« Two image area subsets S1 and S2 are adjacent if some
pixel in S1 is adjacent to some pixel S2

 Path

— a path from pixel p(x,y) to pixel q(s,t) is a sequence of distinct
pixels with coordinates

(X,Y)=(X0,Yo), (X4,¥1),---, (Xn, V)
where (Xq, Yo) = (X, ¥), (X, ¥») = (s, t) and (x, y;) is adjacent to
(Xi.1,Yi.1), N is the length of the path

« Connected component: a group of pixels such that it
contains a path connecting every pair of its pixels.



Example
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FIGURE 2.25 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is
shown by dashed lines; note the ambiguity). (¢) m-adjacency. (d) Two regions that are
adjacent if 8-adjecency is used. (e) The circled point is part of the boundary of the
1-valued pixels only if 8-adjacency between the region and background is used. (f) The
inner boundary of the 1-valued region does not form a closed path, but its outer
boundary does.



Example

Consider the two image subsets S1 and S2 :
For V={1}, determine whether S1 and S2 are
4-connected, 8-connected, m-connected

= O = = O
_—0 O = O



Labeling of Connected Components

scan the image from left to right
Let p denote the pixel at any step in the scanning process.
Let t denote the upper neighbor of p.

Let | denote the left-hand neighbors of p, respectively. when we get to p,
points t and | have already been encountered and labeled if they were 1's.

if the value of p = 0, move on.
if the value of p = 1, examine t and |.
if they are both 0, assign a new label to p.
if only one of them is 1, assign its label to p.
if they are both 1
if they have the same label, assign that label to p.

if not, assign one of the labels to p and make a note that the two labels
are equivalent. (t and | are connected through p).

at the end of the scan, all points with value 1 have been labeled.
do a second scan, assign a new label for each equivalent labels



Example
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 How to find the bounding box of a connected component?



Distance Measures

Given pixels p(x,y), q(s,t) and z(u,v). D is a
distance function or metric if

(@)D(p,q) 20 ; D(p,q) =0 iff p=q
(b)D(p.q) = D(q,p)
(¢)D(p,z) = D(p,q) + D(q,z)



Euclidean Distance

Euclidean distance between p and g

p(x,¥).q(s,1),

D, (p,q) =+/(5—X)? + (t—y)’



Manhattan Distance

« Manhattan distance

p(X, y),q(s,t),
D,.(p,q) =[s—x[+|t-Y]

e.g. the diamond centered at (X, y)
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Chessboard distance

* Dg distance

p(x,¥).qa(s,1),
D, (P, @) = maxq|s—x|,|t—y |}



Other distances

D, distance
— defined by the length of the shortest D, path

* Dg distance
— defined by the length of the shortest Dg path

* m-connectivity’s distance
— defined by the length of the shortest m-connectivity path



Arithmetic Operators of Images

 Arithmetic operations of two images are carried out by
the arithmetic operations of the corresponding pixels of
the two images.

« Addition : p+q used in image average to reduce noise.
« Subtraction : p-q basic tool in medical imaging.

« Multiplication : pxq to correct gray-level shading result
from non-uniformities in illumination or in the sensor
used to acquire the image.

* Division : p/q



Logic operations

« AND : pAND q
« OR: pORq
« COMPLEMENT :NOTq ()

 logic operations apply only to binary images
* Arithmetic operations apply to multi-valued pixels

 logic operations used for tasks such as masking, feature
detection, and shape analysis.
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FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)—(f) Results of

averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)



FIGURE 2.27 (a) Infrared image of the Washington, D.C. area. (b) Image obtained by setting to zero the least
significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity.



ab
cd

FIGURE 2.28
Digital
subtraction
angiography.

(a) Mask 1mage.
(b) A live image.
(c) Difference
between (a) and
(b). (d) Enhanced
difference image.
(Figures (a) and
(b) courtesy of
The Image
Sciences Institute,
University
Medical Center,
Utrecht, The
Netherlands.)
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FIGURE 2.29 Shading correction. (a) Shaded SEM image of a tungsten filament and support, magnified
approximately 130 times. (b) The shading pattern. (c) Product of (a) by the reciprocal of (b). (Original image
courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)
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FIGURE 2.32 Set
operations
involving gray-
scale images.

(a) Original
image. (b) Image
negative obtained
using set
complementation.
(c) The union of
(a) and a constant
image.

(Original image
courtesy of G.E.
Medical Systems.)



XOR

NOT(A)

(A) XOR (B)—,

FIGURE 2.33
[llustration of
logical operations
involving
foreground
(white) pixels.
Black represents
binary Os and
white binary 1s.
The dashed lines
are shown for
reference only.
They are not part
of the result.



Mask Operation

« Besides pixel-by-pixel processing on entire images,
arithmetic and Logical operations are used In
neighborhood oriented operations.

« The value of a pixel is arithmetic result of its neighbors.

e.g 9

Z=> WZ
W, are called mask coefficients.
When w. =1/9,i=1,...,9




Mask coefficient

* Proper selection of the coefficients and application of the
mask at each pixel position in an image makes possible
a variety of useful image operations

— noise reduction
— region thinning
— edge detection

* Applying a mask at each pixel location in an image is a
computationally expensive task.

More mathematics will be involved.



Image Geometry Transformation

« Geometry transformation
p(x,y) =>p’ (X, Y)

Basic transformations
— Translation

— Scaling

— Rotation

The composition of transformations

Transformation matrix

p =1p



Translate

« Translate point P
to point P’ along

X' =X+ X, a vector (Xo, ¥o)
y' =Y+, « Homogeneous
(x'j (xj [XO] coordinates
= +
y' y Yo
(x) (1 0 X\ x) (1 0 X,

Y |= 0 1 Yo || Y ’T(XO’yO): 0 1 Yo




Rotation

X'=XCcos@d+ysing * Rotate w.rt
. X -axis

y'=—XxSIn@+ycosd

(x'") (cos@ sind 0)(x
y' —sing coséd 0|y
o 0 AL
(cos@ sing 0
T.(0)=|—-sin@d coséd O

.0 0 1,




Scaling

X'= C X
y = ¢,V
fx '\ (
y':
1)\
T,(c,,c,)




TABLE 2.2

Affine transformations based on Eq. (2.6.-23).

Trans;g;ln;ation Affine Matrix, T %oq(:::tiil:: se Example
Identity 1 0 0 A=V
01 0 yow VP}J
0 0 1 i
X
Scaling e 0 0 X =GV
{0 Cy 0—‘ y =cw \ ‘
10 0 1 JL
o ¥
Rotation [ cos® sin® O] x=vcosf —wsin b A
—sin® cos® O y =vcos f + wsin d @»
e 4
J
Translation 0 0 x=v+I
0O 1 0 y=w-+lI, l—’
Lot 1 T
Shear (vertical) "1 0 0] X =v+ s,w
sg 1 0 y=w m
0 0 1
o 01 E
Shear (horizontal) 1 s, 0] x=wv =7
0 1 0 y =50+ w B/
[0 0 1] —




Composition of Transformations

* The transformation matrix of a sequence of
transformation is equal to the product of transformation
matrices of each individual matrix.

P— P2 — 5P
R=Th,T=7
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FIGURE 2.36 (a) A 300 dpi image of the letter T. (b) Image rotated 21° clockwise using nearest neighbor
interpolation to assign intensity values to the spatially transformed pixels. (¢) Image rotated 21° using
bilinear interpolation. (d) Image rotated 21° using bicubic interpolation. The enlarged sections show edge
detail for the three interpolation approaches.
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FIGURE 2.37
Image
registration.

(a) Reference
image. (b) Input
(geometrically
distorted image).
Corresponding tie
points are shown
as small white
squares near the
COrners.

(c) Registered
image (note the
errors in the
borders).

(d) Ditference
between (a) and
(c), showing more
registration
CITOrS.



Image Transformation

* |nput an image output another image
FOxy) ——9(xy)
g=T(f)

Geometry transformation

g(x,y) =1 (M(x,y))

Intensity transformation

g(x,y) =T(1(x,y))

These transformation works directly on pixels.
They are spatial transformation, or in spatial domain.



Image Transformation

* The transformation can be complicate in transformation
domain

f(Xy)——>9(x¥),9=T(f)

Tu, v) g R[T(u, v)] e

f(x.,y)—= Transform - Opu}glmn - :?L:Ei;nn —= (X, y)
— —— e e —— . e——
Spﬂliﬂl e, —_— ——————— Spdl]:;]l
domain Transform domain domain

M-1N-1

T(u,v)=> > fXy)r(xyuv)
x=0 y=0
M-1N-1

f(X,y) T (u,v)s(x,y,u,v)

I
(@)

u=0 v



Image Transformation

« Example: 2-D Fourier transformation

r(X y U V) :e—jZn(ux/MJrvy/N)

1 ej27r(ux/M +vy/N)

S(X,y,u,v) = vI§

M-1N-1
T(U,V) Ze Jj27(Ux/M+vy/N)

Xx=0 y=

f(X, y) = N Z T(U V)eJZn(ux/M+W/N)



