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1. Image modeling and representation

• A 2D image is a function of any quantity over a finite 
spatial extent: 
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• The value of f(x, y,) can be real number, integer, or 0,1

– Continuous space image: x and y are chosen as real numbers
– Discrete space: x and y are chosen as integers



Digital images in discrete space

• 2D digital image
– x = 0, …, M-1, y = 0, …, N-1, and f(x, y) are integers in binary 

format of 8 bits 16 bits (or d bits)format of 8 bits, 16 bits (or d bits).
– (i, j) is pixel, f(x, y) is its pixel or intensity
– Resolution: M × N, i.e. number of pixels
– Size: M  × N × d

i.e., the total number of bits to represent the image
– Represented as a matrix
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Pixel coordinate and spatial coordinate

•
Discrete domain                          Continuous demain



For color image, f(x, y) is triple of integers:
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One-Dimensional Image

• 1D image is a function 
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• One-dimensional (1D) image can be represented as a 
sequence of numbers:
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sequence of numbers:
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• Graphical representation



Image representation

• A 1D image of one point
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• Represent image of discrete domain by continuous 

image function. 
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• Representation in continuous domain
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Image representation

• 2D image of one point

1 ( ) (0 0)x y =⎧

Represent image of discrete domain by continuous
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• Represent image of discrete domain by continuous 

image function. 
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2. Relations of pixels

• Neighbors of a pixel p at (x, y)

4-neighbors of p: 
N4(p) ={ (x+1, y), (x-1,y),(x,y+1), (x,y-1)}

4-diagonal neighbors of p:

ND(p) = { (x+1, y+1), (x+1,y-1),(x-1,y+1), (x-1,y-1)}

8-neighbors of p :

N ( ) N ( ) U N ( )N8(p) =  N4(p) U ND(p)



Connectivity
Let V be the set of gray-level values used to defined connectivity

• 4-connectivity : 2 pixels p and q with values from V are 4-connected• 4-connectivity : 2 pixels p and q with values from V are 4-connected 
if q is in the set N4(p)

• 8-connectivity : 2 pixels p and q with values from V are 8-connected• 8-connectivity : 2 pixels p and q with values from V are 8-connected 
if q is in the set N8(p)

• m-connectivity (mixed connectivity): 2 pixels p and q with values• m-connectivity (mixed connectivity): 2 pixels p and q with values 
from V are m-connected if q is in the set N4(p), or q is in the set 
ND(p) and the set N4(p)∩N4(q) is empty.  (the set of pixels that are 4-
neighbors of both p and q whose values are from V )e g bo s o bot p a d q ose a ues a e o )



Adjacent, path and connected component

• Adjacent: a pixel p is adjacent to a pixel q if they are 
connected

• Two image area subsets S1 and S2 are adjacent if some 
pixel in S1 is adjacent to some pixel S2pixel in S1 is adjacent to some pixel S2

• Path
– a path from pixel p(x,y) to pixel q(s,t) is a sequence of distinct 

pixels with coordinates 
(x,y)=(x0,y0), (x1,y1),…, (xn, yn) , 

h ( ) ( ) ( ) ( t) d ( ) i dj t twhere (x0, y0) = (x, y) ,  (xn, yn) = (s, t) and (xi, yi)  is adjacent to 
(xi-1,yi-1),  n is the length of the path

C t d t f i l h th t it• Connected component: a group of pixels such that it 
contains a path connecting every pair of its pixels. 



Example



Example

Consider the two image subsets S1 and S2 :
For V={1}, determine whether S1 and S2 are
4-connected, 8-connected, m-connected



Labeling of Connected Components

scan the image from left to right
Let p denote the pixel at any step in the scanning process.
L t t d t th i hb fLet t denote the upper neighbor of p.
Let l denote the left-hand neighbors of p, respectively. when we get to p, 
points t and l have already been encountered and labeled if they were 1’s.

if the value of p = 0 move onif the value of p = 0, move on.
if the value of p = 1, examine t and l.

if they are both 0, assign a new label to p.
if only one of them is 1 assign its label to pif only one of them is 1, assign its label to p.
if they are both 1

if they have the same label, assign that label to p.
if not assign one of the labels to p and make a note that the two labelsif not, assign one of the labels to p and make a note that the two labels      

are equivalent. (t and l are connected through p).
at the end of the scan, all points with value 1 have been labeled.
do a second scan assign a new label for each equivalent labelsdo a second scan, assign a new label for each equivalent labels



Example
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• How to find the bounding box of a connected component?
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Distance Measures

Given pixels p(x,y), q(s,t) and z(u,v). D  is a 
distance function or metric if

(a)D(p,q) ≥ 0 ; D(p,q) = 0  iff  p=q
(b)D(p,q) = D(q,p)
(c)D(p,z) ≤ D(p,q) + D(q,z)( ) (p ) (p q) (q )



Euclidean Distance

Euclidean distance between p and q

( , ), ( , ),p x y q s t
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Manhattan Distance

• Manhattan distance 
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e.g. the diamond centered at (x, y)
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Chessboard distance

• D8 distance

( , ), ( , ),p x y q s t

8 ( , ) max{| |,| |}D p q s x t y= − −



Other distances

• D4 distance 
– defined by the length of the shortest D4  path

• D8 distance
– defined by the length of the shortest D8 pathy g 8  p

• m-connectivity’s distance
d fi d b th l th f th h t t ti it th– defined by the length of the shortest m-connectivity path



Arithmetic Operators of Images

• Arithmetic operations of two images are carried out by 
the arithmetic operations of the corresponding pixels of 
th t ithe two images. 

• Addition : p+q used in image average to reduce noise.Addition : p q used in image average to reduce noise.

• Subtraction : p-q basic tool in medical imaging.

• Multiplication : pxq to correct gray-level shading result 
from non-uniformities in illumination or in the sensorfrom non uniformities in illumination or in the sensor 
used to acquire the image.

Di i i /• Division : p/q



Logic operations

• AND : p AND q
• OR :    p OR q
• COMPLEMENT : NOT q ( )

• logic operations apply only to binary images

• Arithmetic operations apply to multi-valued pixels

l i ti d f t k h ki f t• logic operations used for tasks such as masking, feature 
detection, and shape analysis. 















Mask Operation

• Besides pixel-by-pixel processing on entire images, 
arithmetic and Logical operations are used in 

i hb h d i t d tineighborhood oriented operations.
• The value of a pixel is arithmetic result of its neighbors.
e g 9e.g 

Wi are called mask coefficients.
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Mask coefficient

• Proper selection of the coefficients and application of the 
mask at each pixel position in an image makes possible 

i t f f l i tia variety of useful image operations
– noise reduction
– region thinning– region thinning
– edge detection

• Applying a mask at each pixel location in an image is a 
computationally expensive task.

More mathematics will be involved. 



Image Geometry Transformation

• Geometry transformation
p(x, y) => p’ (x’, y’)  

• Basic transformations 
Translation– Translation

– Scaling
– Rotation

• The composition of transformations

T f ti t i• Transformation matrix 

'p Tp=p Tp



Translate

• Translate point P 
to point P’ along 

0

0

'
'

x x x
y y y
= +
= +

a vector (x0, y0)

• Homogeneous0

0

0

'
'

xx x
yy y

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

• Homogeneous 
coordinates

0

0 0' 1 0 1 0
' 0 1 ( ) 0 1

yy y

x x x x
T

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

0 0 0 0' 0 1 , ( , ) 0 1
1 0 0 1 1 0 0 1
y y y T x y y⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠



Rotation

• Rotate w.r.t 
x -axis
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Scaling
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Composition of Transformations

• The transformation matrix of a sequence of 
transformation is equal to the product of  transformation 
matrices of each individual matrix.  
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Image Transformation

• Input an image output another image
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• Geometry transformation

( , ) ( ( , ) ')g x y f M x y=

• Intensity transformation
( , ) ( ( , ))g x y T f x y=

• These transformation works directly on pixels. 
They are spatial transformation, or in spatial domain.y p , p



Image Transformation

• The transformation can be complicate in transformation 
domain 
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Image Transformation

• Example: 2-D Fourier transformation
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